Геоинформационные технологии и их использование. Геоинформационные технологии, основные характеристики современных гис. Нетривиальный продукт, написанный на Visual SmallTalk

Геоинформационные технологии. Отображение инф-ии на электронной карте.

Геоинф-ые с-мы;

С-мы федерального и муниципального управления;

С-мы проектирования

С-мы военного назначения

Графический образ состоит из подложки (фона) и самих объектов

Проблема реализации – трудность формализованного описания предметной области и отображение ее на электронной карте.

Основным классом данных геоинформационных систем (ГИС) являются координатные данные, содержащие геометрическую ин­формацию и отражающие пространственный аспект. Основные типы координатных данных: точка (узлы, вершины); линия (не­замкнутая); контур (замкнутая линия); полигон (ареал, район). Типы взаимосвязи:

Построение сложных элементов из простых объектов

Вычисляемые по координатам объектов

Определяются с помощью спец описания и семантики вводимых данных

Основу графической среды составляют векторные и растровые модели. Векторные – вектора, требуют меньшего объема памяти.

Растровые модели – ячеистые, каждой ячейке соответствует цвет и плотность.

Растровые модели делятся на регуляр­ные, нерегулярные и вложенные (рекурсивные или иерархические) мозаики. Плоские регулярные мозаики бывают трех типов: квадрат, треугольник и шестиугольник.


Вопрос № 13

Базовые информационные технологии: технологии защиты информации

В связи с внедрением ИТ возникла потребность защиты инф-ии.

Виды инф-ых угроз:

Отказы и нарушение работоспособности технических ср-в

Преднамеренные угрозы злоумышленников

Основные причины сбоев и отказов техники:

Старение и износ

Некорректное использование ресурсов

Программные нарушения

Устранение ошибок:

Избыточность компьютрных ресурсов

Защита от некорректного использования ресурсов

Выявление и своевременное устранение ошибок

Стр-ная избыточночть- резервирование ап-тных компонентов и машинных носителей.

Инф-ная избыточность – периодическое или постоянное резервирование данных на основных и резервных носителях

Функциональная избыточность- дублирование функций и внесение дополнительных функций в программно-ап-тные ресурсы.

Преднамеренные угрозы:

При постоянном участии человека

Вредоносные программы, работающие без участия человека

Защита от угроз:

Запрещение несанкционированного доступа

Невозможность несанкционированного использования ресурсов

Обнаружение факта несанкционированного доступа

Основной способ защиты от несанкционированного доступа:

Идентификация

Аутентификация

Определение полномочий

Пароли: простые – постоянные, сложные – динамически изменяющиеся:

Модификация простых паролей, одноразовые пароли

Метод “запрос-ответ” выбор пароля из списка массива

Функциональные методы

Программы;

Внешняя память (файлы, каталоги, логические диски);

Оперативная память;

Время (приоритет) использования процессора;

Порты ввода-вывода;

Внешние устройства.

Различают следующие виды прав пользователей по доступу к ресурсам:

Всеобщее (полное предоставление ресурса);

Функциональное или частичное;

Временное.

Наиболее распространенными способами разграничения досту­па являются:

Разграничение по спискам (пользователей или ресурсов);

Использование матрицы установления полномочий (строки - идентификаторы столбцы - ресурсы компьютерной системы);


Вопрос № 14

Базовые информационные технологии: CASE-технологии. Задачи концорциума OMG и спецификация OMA. Идеальное объектно-ориентированное CASE-средство. Критерии оценки и выбора CASE-средств.

Функционально-модульный подход основан на принципе алгорит­мической декомпозиции с выделением функциональных элементов и установлением строгого порядка выполняемых действий. «-» однонаправленность потока инф-ии, недостаточная обратная связь

Объектно-ориентированный подход основан на объектной де­композиции с описанием поведения системы в терминах взаимо­действия объектов.

Под CASE-технологией будем понимать комплекс программных средств, поддерживающих процессы создания и сопровождения программного обеспечения, включая анализ и формулировку тре­бований, проектирование, генерацию кода, тестирование, докумен­тирование, обеспечение качества, конфигурационное управление и управление проектом.

Из-за двух подходов к проектированию ПО, существуют CASE-технологии ориентиро­ванные на структурный подход, объектно-ориентированный под­ход, и комбинированные. Большое распространение получил ООП. Причины этого:

Возможностью сборки программной системы из готовых ком­понентов,

Возможностью накопления проектных решений в виде биб­лиотек

Простотой внесения изменений в проекты за счет инкапсуля­ции

Быстрой адаптацией приложений к изменяющимся условиям

Возможностью организации параллельной работы аналити­ков, проектировщиков и программистов.

Концепции объект­но-ориентированного подхода и распределенных вычислений стали базой для создания консорциума Object Management Group (OMG). Основным направле­нием деятельности консорциума является разработка специфика­ций и стандартов для создания распределенных объектных систем в разнородных средах. Базисом стали спецификации под названи­ем Object Management Architecture (ОМА).

ОМА состоит из четырех основных компонентов, представляю­щих спецификации различных уровней поддержки приложений.

Архитектура брокера запросов объектов (CORBA)определяет механизмы взаимодей­ствия объектов в разнородной сети;

Объектные сервисы являются основными системными сервисами, используемыми разработчиками для создания приложений;

Универсальные средства являются высо­коуровневыми системными сервисами, ориентированными на под­держку пользовательских приложений (электронная почта, средст­ва печати и др.);

Прикладные объекты предназначены для решения конкретных прикладных задач.

Концепция идеального объектно-ориентиро­ванного CASE-средства.

Ав­торами наиболее распространенных объектно-ориентированных методов являются Г.Буч, Д.Рамбо, И.Джекобсон (UML).

Классическая постановка задачи разработки программной сис­темы (инжиниринг) представляет собой спиральный цикл итера­тивного чередования этапов ОО анализа, проектирования и реализации.


Вопрос №15

«Базовые информационные технологии: телекоммуникационные технологии.»

архитектуры

Архитектуры копм. Сетей

1. одноранговая

2. клиен-сервер

3. клиент-сервер дляWeb-технологий

1. терминал – для отображения и ввода

MainFrame- все вычисления и данные

2. Локльные, корпоративные, глобальные сети объединяющие ПК клиентов использующие ресурсы и серверы предоставляющие ресурсы.

Компонент представления – интерфейс;

Прикладной компонент – отвечающий за выполнение ф-ий;

Компонент доступа к данным (менеджер ресурсов) – отвечает за определение и управление данными;

1.Доступ к удаленным данны

«-»низкая производительность

низкая скорость

2. Сервер управления данными

«+»Передается чатсть данных

Прикладные ф-ии унифицировны

«-»Отсутствие четкого разграничения между компонентом представления и прикладным компонентом.

3. Комплексный сервер

«+»Высокая производительность

Централизованное администрирование

Экономия ресурсов

4. Тонкий клиент

«+»Организация разных прикладных компонентов при разных задачах, без перенастройки сервера и клиента.


Вопрос№16

«Базовые информационные технологии: технологии искусственного интеллекта.»

Система называется интеллектуаль­ной, если в ней реализованы следующие основные функции:

Накапливать знания об окружающем систему мире, класси­фицировать и оценивать их с точки зрения прагматической полез­ности и непротиворечивости, инициировать процессы получения
новых знаний, осуществлять соотнесение новых знаний с ранее хранимыми;

Пополнять поступившие знания с помощью логического вы­вода, отражающего закономерности в окружающем систему мире или в накопленных ею ранее знаниях, получать обобщенные зна­ния на основе более частных знаний и логически планировать свою деятельность;

Общаться с человеком на языке, максимально приближенном к естественному человеческому языку, и получать информацию от каналов, аналогичных тем, которые использует человек при вос­приятии окружающего мира, уметь формировать для себя или по просьбе человека (пользователя) объяснение собственной деятель­ности, оказывать пользователю помощь за счет тех знаний, кото­рые хранятся в памяти, и тех логических средств рассуждений, ко­торые присущи системе.

База знаний – совокупность сред, хранящих знания различных типов. База фактов – хранит конкретные данные. База правил – элементарные выражения. База процедур прикладные программы выполняющие преобразования и вычисления. База закономерностей – сведения, относящиеся к особеностям той среды, в которой действует система. База метазнаний – база знаний о себе. База целей – сценарии, для достижения целей, которые поступили от пользователя или самой системы. Блок планирования – планирование решений.

Интеллектуальные информационно-поисковые системы – взаимодействие с проблемно-ориентированными базами данных на естественном языке.

Экспертные системы – вычислительная система использующая знания эксперта и процедуры логического вывода для решения проблем.

Расчетно-логические системы – позволяют решать управленческие и проектные задачи по их постановке и исходным данным.

Гибридные системы

Модели представления знаний:

Семантические сети – граф, вершины – понятия, дуги – отношения между понятиями.


Вопрос№17

«Информационные технологии организационного управления (Корпоративные информационные технологии).»

Методы управления и ИТ:

1. Ресурсами - СУБД

2. Процессами - Workflow

3. Корпоративными знаниями (коммуникациями) - Интранет

1) MRP – методология планирования материальных ресурсов предприятия, используемая совместно с MPS - методологией объемно-календарного планирования. CRP - методология планирования производственных ресурсов (мощностей).

MRP2 – интегрированная методология планирования и управления всеми производственными ресурсами предприятия MRP/CRP и использующей MPS b FRP – планирование финансовых ресурсов.

ERP – интегрированное планирование всех бизнес-ресурсов предприятия. Для торговли, сферы услуг, финансов.

CSRP – планирование ресурсов, синхронизированное с потреблением.

Т.к. в производстве задействовано мн-во поставщиков и покупателей – новая концепция логистических цепочек – учет при анализе деятельности всей цепочки превращения товара из сырья в готовое изделие. Дальнейшее развитие логистических цепочек – виртуальный бизнес – распределенная система нескольких компаний и охватывающая полный жизненый цикл товара или разделение одной компании на несколько виртуальных бизнесов.

3) Итранет - корпоративные коммуникации. 3 уровня реализации телекоммуникационных технологий: аппаратный, программный и информационый. От Интернета отличается только информационным. 3 уровня этого аспекта: 1. Универсальный язык представления корпоративных знаний – не зависит от предметной обл. и определяет грамматику и синтаксис. Графическое описание моделей данных. Задачи: унификация представления знаний, однозначное толкование знаний, разбиение процессов обработки знаний на простые процедуры. 2. Модели представлений – определяют специфику деятельности организации. Описывают первичные данные. 3. Фактические знания – конкретная предметная обл. и являются первичными данными.

Архитектуры.

1. Централизованная архитектура на мэйнфреймах, где осуществляется хранение и обработка данных. «+» простота администрирования, защита информации.

2. Клиент – сервер.

На сервере данные, а не информаци

Для обмена данным – закрытый протокол

На клиентах данные интерпретируются и преобразуются в информацию

Фрагменты прикладных систем размещаются на клиентах

«+»низкая нагрузка сети, высокая надежность, гибкая настройка уровня прав пользователей, поддержка полей больших размеров.

«-»трудность администрирования(территориальная разобщенность), недостаточная степень защиты информации от несанкционированных действий, закрытый протокол (специфичен для данной ИС).

Архитектура Интранет – объединение предыдущих. Вся информация и процессы на центральном комп. На рабочих местах – простейшие устройства доступа, предоставляющие возможность управления процессами в ИС.

«+»на сервере информация, протокол открытого типа, прикладные программы на сервере, облегчено централихованное управление сервером и раб.


Вопрос№18

«Информационные технологии в промышленности и экономике»

При проектировании АСУП зачастую игнорировались вопрос совместимости, стандартизации, что затрудняло внедрение современных технологий и приводило к большим затратам на модернизацию. Широкое распространение получили корпоративные ин­формационные системы (КИС), базирующиеся на принципах корпоративных информационных технологий и со­временных стандартов.

Формирования отчетных показателей (налоговые службы, статистика, инвесторы и т.д.), получаемых на основе стандартной бухгалтерской и статистической отчетности;

Выработки стратегических управленческих решений по разви­тию бизнеса на основе базы высокоагрегированных показателей;

Выработки тактических решений, направленных на оперативное управление и решаемых на основе базы частных, высокодетализированных показателей, отражающих различные стороны ло­кальных характеристик функционирования структуры.

Основные трудности при диагностике:

Обследование, системный анализ и оценка существующей структуры и технологий управления

Разработка новых вариантов организационных структур и технологий управления на основе ИТ

Разработка положений по реорганизации управления, плана внедрения, регламента управленческого документооборота.

КИС: - тиражируемые – не требует доработки для малых предприятий.

Заказные – ненадежны, производства с очень большой спецификой

Полузаказные – гибкие, крупные предприятия

АСУТП принципы:

Совместимость програмно-аппаратных средств различных фирм-производителей

Комплексная проверка и отладка всей системы на стенде фирмы-интегратора на основе спецификаций заказчика. Технические языки релейно-контактных схем.

Нижний уровень АСУТП – контроллеры, обеспечивающие первичную обработку информации. Верхний уровень – мощные компы, выполняющие ф-ии серверов БД и рабочих станций, обеспечивающих хранение, анализ, обработку и взаимодействие с оператором. ПО – SCADA.

Концепции открытых систем OMAC

Открытая архитектура, обеспечивающая интеграцию аппаратного О и ПО

Модульная архитектура

Масштабируемость, изменение конфигурации для конкретных задач

Экономичность

Легко обслуживаемая архитектура


Вопрос№19

«Информационные технологии в образовании»

В процессе информатизации образования необходимо выделить следующие аспекты:

Методологический. Здесь главной проблемой является выработка основных принципов образовательного процесса, соот­ветствующих современному уровню информационных технологий.

Экономический. Экономической основой информационного общества являются отрасли информационной индустрии. Происходит интенсивный процесс формирования мировой «информационной экономики», заключающийся в глобализация информационных, информационно-технологических и телекоммуникационных рынков.

Технический. В настоящее время создано и внедрено достаточно большое число программных и технических разработок, реализующих отдельные ИТ. Но при этом используются различные методические подходы, несовместимые технические и программные средства, что затрудняет тиражирование.

Технологический. Технологической основой информационного общества являются телекоммуникационные и информационные технологии, которые стали лидерами технологического прогресса, неотъемлемым элементом любых современных технологий они порождают экономический рост, создают условия для свобод­ного обращения в обществе больших массивов информации и зна­ний, приводят к существенным социально-экономическим преоб­разованиям и, в конечном счете, к становлению информационного общества.

Методический аспект. Основные преимущества современных информационных технологий (наглядность, возможность исполь­зования комбинированных форм представления информа­ции - данные, стереозвучание, графическое изображение, анима­ция, обработка и хранение больших объемов информации, доступ к мировым информационным ресурсам) должны стать основой поддержки процесса образования.

Основные факторы, влияющие на эффективность использова­ния информационных ресурсов в образовательном процессе:

1. Информационная перегрузка - это реальность. Избыток данных служит причиной снижения качества мышления прежде всего среди образованных членов современного общества;

2. Внедрение современных информационных технологий целе­сообразно в том случае, если это позволяет создать дополнитель­ные возможности в следующих направлениях:

Доступ к большому объему учебной информации;

Образная наглядная форма представления изучаемого материала;

Поддержка активных методов обучения;

Возможность вложенного модульного представления информации.

3. Выполнение следующих дидактических требований:

Целесообразность представления учебного материала;

Достаточность, наглядность, полнота, современность и структурированность учебного материала;

Многослойность представления учебного материала по уровню сложности;

Своевременность и полнота контрольных вопросов и тестов;

Протоколирование действий во время работы;

Интерактивность, возможность выбора режима работы с учебным материалом;

Наличие в каждом предмете основной, инвариантной и ва­риативной частей, которые могут корректироваться.

4. Компьютерная поддержка каждого изучаемого предмета, и этот процесс нельзя подменить изучением единственного курса ин­форматики.


Вопрос№20

«Информационные технологии автоматизированного проектирования.»

Создание САПР-продуктов происходит в следующих направле­ниях:

Универсальный графический пакет для плоского черчения, объемного моделирования и фотореалистической визуализации;

Открытая графическая среда для создания приложений

Графический редактор и графическая среда приложений

Открытая среда конструкторского проектирования;

САПР для непрофессионалов (домашнего использования)

Наиболее полно возможности САПР-продукта на уровне универсального графического пакета можно проследить на примере AutoCAD 2000. Особенности:

Возможность работы с несколькими файлами чертежей в одном сеансе без потери производительности;

Контекстное всплывающее меню, включающее группу операций буферного обмена

Наличие средств моделирования, позволяющих редактировать твердотельные объекты на уровне ребер и граней;

Возможность обращения к свойствам объектов;

Возможность выбора, группировки и фильтрации объектов по типам и свойствам;

Наличие технологии создания и редактирования блоков;

Возможность вставки в чертеж гиперссылок;

Включение нового интерфейса технологии drag-and-drop для работы с блоками, внешними ссылками, файла­ми изображений и чертежей;

Управление толщиной (весом) линий напрямую с воспроиз­водством на экране;

Возможность работы со слоями без вывода на печать;

Наглядная работа с размерами и размерными стилями;

Наличие средств управления видами и системами координат;

Наличие нескольких режимов визуализации от проволочного каркаса до закраски;

Наличие средств обеспечения точности ввода при создании и редактировании;

Возможность компоновки чертежей и вывода на печать; работа с внешними базами данных;

Наиболее перспективным в области автоматизированного про­бирования является использование открытых сред, основной ценностью которых является автоматизация процесса проекти­рования: выбор структуры объекта проектирования; необходимые расчеты, включая геометрические и т.д. Примером реализации такого подхода является СПРУТ-технология, реализованная в виде графической оболочки со сменной проблемной ориентацией DiaCad .

Однако DiaCad является только составной частью СПРУТ-технологии и используется в тех случаях, когда удается формализовать процесс проектирования в данной предметной сре­де. Там, где это невозможно, используются средства интерактивного черчения, так же как в известных средствах графического редак­тирования.



Вопрос№21

«Системный подход к построению информационных систем»

Проектирование ИС подходы:

Каскадный

Спиральный – непрерывная разработка ИС

Системный

Система –совокупность объектов, свойства которой определяются отношением между объектами. Каждый объект – как система. Ф-ии объекта определяются его внутренним устройством. Ф-ии системы проявляются в процессе ее взаимодействия с внешней средой. Технические системы создаются с определенной целью. Цель является субъективной из-за разработчика, но исходит из объективных потребностей об-ва. ИТ как система. Возникновение проблемы порождает будущую систему.

Система – конечное мн-во функциональных элементов и отношений между ними, которые выделяются из окружающей среды в соответствии с поставленной целью в рамках определенного временного интервала ее реализации.

Системный подход реализуется путем изучения ф-ии или структуры системы.

Структурный подход – структура отображает всязи между элементами системы с учетом их взаимодействия в пространстве и во времени. Служит для изучения существующей системы.

Функциональный подход – отображает ф-ии системы, реализуемые в соответствии с поставленной перед ней целью.

Структура системы описывается на:

Концептуальном уровне – позволяет качественно определить основные подсистемы, элементы и связи между ними.

Логическом уровне – формирование модели, описывающей структуру отдельных подсистем и взаимодействие между ними.

Физический уровень – реализация структуры на известных программно-аппаратных средствах.

Принципы системного подхода:

1. Наличие сформулированной единой цели у ИТ в рамках разрабатываемой системы.

2. Согласование ИТ по входам и выходам с окружающей средой

3. Типизация структур ИТ

4. стандартизация и взаимная увязка средств ИТ

5. Открытость ИТ как системы

Основные принципы и закономерности проектирования определяются системотехникой.

Системотехника – направление кибернетики, изучающее вопросы планирования, проектирования, конструирования и поведения сложных ИС, основу которых составляют ЭВМ.

Проектирование можно представить как цикл, каждая итерация которого отличается большей детализацией и меньшей общностью.

Анализ->Синтез->Оценка->анализ …

Свойства проектирования:

Дивергенция – расширение границ проектной ситуации с целью обеспечения более обширного пространства поиска решения.

Трансформация – стадия создания принципов и концепций

Конвергенция – охватывает традиционное проектирование (программирование, отладка, проработка деталей)


Вопрос№22

«Анализ и формирование концептуальной модели предметной области.»

Вся информация, описывающая конкретную предметную область, должна быть определенным образом абстрагирована и формализована.

Основными направлениями формализации информации о предметной области являются:

Теория классификации, базирующаяся на таксономическом и мерономическом описании информации. Таксономическое описа­ние основано на идеологии множеств, а мерономическое осуществ­ляется через строго формализованное определение классов;

Теория измерений, предлагающая базу для качественных и количественных измерений через классификационные и порядко­вые шкалы;

Семиотика, изучающая знаковые системы с точки зрения синтактики, семантики и прагматики.

Предметная область - реальный мир, который должен быть отражен в информационной базе.

Факты - результат наблюдения за состоянием предметной об­ласти.

Данные - вид информации, отличающийся высокой степенью форматированности в отличие от более свободных структур, характерных для речевой, текстовой и визуальной информации

Информационная база (база данных) - совокупность данных, предназначенных для совместного применения.

Знания - итог теоретической и практической деятельности че­ловека, отражающий накопление предыдущего опыта и отличаю­щийся высокой степенью структуризации.

В знаниях можно выделить три основные составные части:

Декларативные, представляющие об­щее описание объекта, что не позволяет их использовать без пред­варительной структуризации в конкретной предметной области;

Понятийные (системные) знания, содержащие помимо пер­вой части, взаимосвязи между понятиями и свойства понятий;

Процедурные (алгоритмические) знания, позволяющие полу­чить алгоритм решения.

Предмет - всякая материальная вещь, объект познания.

Свойство - то, что присуще предметам, что отличает их от дру­гих предметов или делает их похожими на другие предметы. Свойст­ва проявляются в процессе взаимодействия предметов.

Признак - все то, в чем предметы, явления сходны друг с дру­гом или в чем они отличаются друг от друга; показатель, сторона предмета или явления, по которой можно узнать, определить или описать предмет или явление.

Атрибут - неотъемлемое, существенное, необходимое свойство, признак предмета или явления, без которого они не могут су­ществовать.

Таким образом, для современного состояния информационных технологий необходим переход от информационного описания предметной области к представлению на уровне данных, осуществ­ляемый на основе декомпозиции, абстракции, агрегирования.

Декомпозиция - это разбиение системы (программы, задачи) на компоненты, объединение которых позволяет решить данную задачу.

Абстракция позволяет правильно выбрать нужные компоненты для декомпозиции.

Агрегирование - процесс объединения предметов в некоторую группу не обязательно в целях классификации. Агрегирование вы­полняется с некоторой целью.


Надо сказать, что в Россию преимущественно попадают такие образцы ГИС, которые ориентированы либо на работу в основном с мелкомасштабными картами (например, М1:1000000 - М1:50000), либо на бизнес-анализ территориально распределённой информации, причём для отображения карты в таких системах не ставится задача удовлетворения всем необходимым стандартам на представление картографической информации.

На переднем каре геоинформатики - в области работы с весьма насыщенными и громоздкими крупномасштабными (М1:2000 или М1:500) картами городов подобные западные ГИС не очень хорошо приспособлены. Другие же ГИС, - которые призваны моделировать сложные динамические процессы, протекающие на территориях городов, или физические процессы в инженерных коммуникациях, стоят многие тысячи долларов на каждое рабочее место, а потому перспективы их продаж в России в период кризиса очень плохие. Их практически и не завозят в нашу страну. Продаются в основном не самые развитые продукты, которые трудно применить на городском уровне в той мере, в какой это необходимо большинству городских служб.

Приведём некоторые ГИС, которые могут представлять интерес.

Наиболее хорошо себя зарекомендовали для работы с мелкомасштабными "природными" картами (геология, сельское хозяйство, навигация, экология и т.п.) такие ГИС, как ArcInfo и ArcView GIS. Обе системы разработаны американской компанией ESRI (www.esri.com., www.dataplus.ru.) и весьма распространены в мире.

Из относительно простых западных ГИС, которые начинали свою родословную с анализа территорий в объёме, необходимом для бизнеса и относительно простых применений, можно назвать систему MapInfo, которая также распространена в мире весьма широко. Эта система очень быстро прогрессирует и сегодня может составить конкуренцию самым развитым ГИС.

Корпорацией Intergraph (www.intergraph.com) поставляется ГИС MGE, базирующаяся на основе AutoCAD-подобной системы MicroStation, выпускаемой в свою очередь компанией Bently. Система MGE представляет собой целое семейство различных программных продуктов, помогающих решать набольшее множество задач, существующих в области геоинформатики.

Все указанные продукты имеют и Internet-ГИС-серверы, позволяющие публиковать цифровые карты в Internet. Правда, приходится говорить только о вьюерах, поскольку обеспечить сегодня редактирование топологических карт со стороны удалённого клиента Internet нельзя по причине недостаточной развитости как ГИС-, так и Internet-технологий.

Буквально недавно вышла на рынок ГИС и Microsoft, подтвердив, тем самым, что ГИС станет в ближайшем будущем такой системой, которую должен иметь на своём компьютере всякий мало-мальски уважающий себя пользователь, как он имеет сегодня у себя Excel Или Word. Microsoft выпустила продукт MapPoint (Microsoft MapPoint 2000 Business Mapping Software), который вошел в состав Office 2000. Эта компонента офисного продукта будет ориентирована в основном на бизнес-планирование и анализ.

Отечественные гис

Повторением концепции ArcInfo, но сильно уступающей последней по функциональной полноте является отечественная система GeoDraw, разработанная в ЦГИ ИГРАН (г.Москва). Возможности её ограничены сегодня в основном мелкомасштабными картами. С нашей точки зрения значительно "сильнее" здесь выглядит "старейшина" отечественной геоинформатики - ГИС Sinteks ABRIS. В последней хорошо представлены функции по анализу пространственной информации.

В геологии сильны позиции ГИС ПАРК (Ланэко, г.Москва), в которой также реализованы уникальные методы моделирования соответствующих процессов.

Наиболее "продвинутыми" в области представления и дежурства крупномасштабных насыщенных карт городов и генпланов крупных предприятий можно считать две отечественные системы: GeoCosm (ГЕОИД, г.Геленджик) и "ИнГео" (ЦСИ "Интегро", г.Уфа, www.integro.ru). Эти системы - одни из самых молодых и потому разрабатывались сразу с использованием самых современных технологий. А систему "ИнГео" разрабатывали даже не столько геодезисты, сколько специалисты, относящие себя к профессионалам в области имитационного моделирования и кадастровых систем.

В целом в России едва ли не в каждой организации создают свою ГИС. Однако, как мы хотели показать в данной статье, этот процесс - весьма непростой, и вероятность его завершения неудачно несравненно более высока, чем вероятность безпроблемной реализации, не говоря уже о возможности выхода коммерческого продукта, допускающим отчуждение

Геоинформационные системы и технологии

Геоинформационная система (ГИС) - это многофункциональная информационная система, предназначенная для сбора, обработки, моделирования и анализа пространственных данных, их отображения и использования при решении расчетных задач, подготовке и принятии решений. Основное назначение ГИС заключается в формировании знаний о Земле, отдельных территориях, местности, а также своевременном доведении необходимых и достаточных пространственных данных до пользователей с целью достижения наибольшей эффективности их работы.

Геоинформационные технологии (ГИТ) - это информационные технологии обработки географически организованной информации.
Основной особенностью ГИС, определяющей ее преимущества в сравнении с другими АИС, является наличие геоинформационной основы, т.е. цифровых карт (ЦК), дающих необходимую информацию о земной поверхности. При этом ЦК должны обеспечивать:
точную привязку, систематизацию, отбор и интеграцию всей поступаю¬щей и хранимой информации (единое адресное пространство);
комплексность и наглядность информации для принятия решений;
возможность динамического моделирования процессов и явлений;
возможность автоматизированного решения задач, связанных с анализом особенностей территории;
возможность оперативного анализа ситуации в экстренных случаях.
История развития ГИТ восходит к работам Р. Томлисона по созданию Канадской ГИС (CGIS), проводившимся в 1963-1971 гг.
В широком смысле ГИТ - это наборы данных и аналитические средства для работы с координатно привязанной информацией. ГИТ - это не информационные технологии в географии, а информационные технологии обработки географически организованной информации.
Существо ГИТ проявляется в ее способности связывать с картографическими (графическими) объектами некоторую описательную (атрибутивную) информацию (в первую очередь алфавитно-цифровую и иную графическую, звуковую и видеоинформацию). Как правило, алфавитно-цифровая информация организуется в виде таблиц реляционной БД. В простейшем случае каждому графическому объекту (а обычно выделяют точечные, линейные и площадные объекты) ставится в соответствие строка таблицы - запись в БД. Использование такой связи, собственно, и открывает столь богатые функциональные возможности перед ГИТ. Эти возможности, естественно, различаются у разных систем, но есть базовый набор функций, обычно имеющийся в любой реализации ГИТ, например, возможность ответа на вопросы "что это?" указанием объекта на кар¬те и "где это находится?" выделением на карте объектов, отобранных по некоторому условию в БД. К базовым можно также отнести ответ на вопрос "что рядом?" и его различные модификации. Исторически первое и наиболее универсальное использование ГИТ - это информационно-поисковые, справочные системы.
Таким образом, ГИТ можно рассматривать как некое расширение технологии БД для координатно привязанной информации. Но даже в этом смысле она представляет собой новый способ интеграции и структурирования информации. Это обусловлено тем, что в реальном мире большая часть информации относится к объектам, для которых важную роль играет их пространственное положение, форма и взаиморасположение, а следовательно, ГИТ во многих приложениях значительно расширяют возможности обычных СУБД, так как ГИТ более удобны и наглядны в использовании и предоставляют ДЛ свой "картографический интерфейс" для организации запроса к базе данных вместе со средствами генерации "графического" отчета. И, наконец, ГИТ добавляет обычным СУБД совершенно новую функциональность - использование пространственных взаимоотношений между объектами.
ГИТ позволяет выполнять над множествами картографических объектов операции, подобные обычным реляционным (JOIN, UNION, INTERSECTION). Операции этой группы называются оверлейными, так как используют в разных вариантах пространственное наложение одного множества объектов на другое. Фактически оверлейные операции обладают большим аналитическим потенциалом, и для многих сфер применения ГИТ являются основными, обеспечивая решение прикладных задач (землепользования, комплексной оценки территорий и другие).
ГИТ предлагает совершенно новый путь развития картографии. Прежде всего, преодолеваются основные недостатки обычных карт: статичность данных и ограниченность емкости "бумаги" как носителя информации. В последние десятилетия не только сложные специализированные карты типа экологических, но и ряд обычных бумажных карт из-за перегруженности информацией становятся "нечитаемыми". ГИТ решает эту проблему путем управления визуализацией информации. Появляется возможность выводить на экран или на твердую копию только те объекты или их множества, которые необходимы пользователю в данный момент. То есть фактически осуществляется переход от сложных комплексных карт к серии взаимоувязанных частных карт. При этом обеспечивается лучшая структурированность информации, что позволяет ее эффективно использовать (манипулирование, анализ данных и т.п.). Очевидно, что наблюдается тенденция возрастания роли ГИТ в процессе активизации информационных ресурсов, т.к. огромные массивы картографической информации эффективно переводимы в активную машиночитаемую форму только с помощью ГИТ. Кроме того, в ГИТ карта становится действительно динамическим объектом.


Последнее обусловлено следующими новыми возможностями ГИТ:
изменяемостью масштаба;
преобразованием картографических проекций:
варьированием объектным составом карты;
"опросом" через карту в режиме реального времени многочисленных БД, содержащих изменяемую информацию;
варьированием символогией, то есть способом отображения объектов (цвет, тип линии и т.п.), в том числе определение символогии через значения атрибутивных признаков объектов, что позволяет синхронизировать визуализацию с изменениями в БД.
В настоящее время широко распространено понимание того, что ГИТ - это не класс или тип программных систем, а базовая технология {umbrella technology) для многих компьютерных приложений (методов и программ), работающих с пространственной информацией.
Поскольку ЦКМ являются наборами данных сложной структуры, то их целесообразно представлять в различных форматах. Под форматом ЦКМ понимается специально введенная система классификации и кодирования данных о местности. От принятого формата ЦКМ во многом зависит оперативность решения функциональных задач (ФЗ) в системах управления военного назначения. Так, например, в случае представления рельефа местности горизонталями вычисление профиля местности занимает в тысячи раз больше времени, чем при представлении рельефа в форме матрицы высот.
Одним из важнейших и наиболее часто встречающихся типов информационной потребности в геоинформации является построение изображения участка карты на экране АРМ {визуализация карты). Но средства отображения ЦКМ на экране АРМ, наряду с приведенными выше требованиями к средствам доступа, должны отвечать еще ряду специфических требований, обусловленных необходимостью восприятия информации человеком. По существу - это следующие эргономические требования, которые целесообразно рассматривать в комплексе с другими:
по "читабельности" обстановки (т.е. обладать достаточно высокими характеристиками скорости и достоверности восприятия человеком информации оперативной обстановки на фоне карты);
по "читабельности" карты, (т.е. обладать достаточно высокими характеристиками скорости и достоверности восприятия человеком собственно картографической информации);
по "комфортности" восприятия, (т.е. форма отображения данных не должна вызывать чрезмерных напряжения человека при восприятии ин¬формации и раздражения его органов чувств в целях обеспечения требуемой продолжительности сохранения его работоспособности).
ФЗ требует для своего решения различные данные о местности. По мнению авторов, все множество этих задач по характеру использования ЦКМ можно разделить на четыре основных класса:
задачи, требующие выдачу изображения карты на устройства ввода- вывода средств автоматизации и использующие ее в качестве фона для вывода оперативной обстановки (ОКФ);
задачи, использующие информацию о характере и профилях местности (ОХПМ);
задачи, использующие информацию о дорожной сети (РДС);
задачи, использующие информацию о местоположении объекта в пределах территории государства, зоны ответственности или нейтральной территории (ОМП).
Задачами ОКФ являются все задачи, отображающие оперативную обстановку на местности в процессе диалога с пользователем. Данные задачи могут отображать "поверх карты" информацию о группировках своих войск и войск противника, зонах радиоактивного, химического, биологического заражения, сплошных разрушений, пожаров, затоплений, о направлениях и рубежах действий, районах сосредоточения и др. Общая для задач ОКФ особенность использования ЦКМ заключается в необходимости быстрого вывода изображения карты на экран АРМ в различных масштабах.
К задачам ОХПМ относятся задачи выбора места развертывания радиорелейных станций (РРС), тропосферных станций (ТРС), радиолокационных станций (PJIC), средств радиотехнической разведки, радиоэлектронной борьбы и т.д. Задачи оценки защитных свойств местности в районах развертывания пунк¬тов управления (ПУ) и узлов связи (УС), планирования огневого воздействия и т.п. также относятся к классу ОХПМ. Особенностью задач ОХПМ является необходимость определения с высокой скоростью характеристик местности в окрестностях точки с произвольными координатами.
К задачам РДС относятся, в частности, задачи определения маршрута и планирования порядка перемещения воинских формирований, оптимального пла-нирования перевозок средств снабжения или почты и некоторые другие. Данные задачи используют данные ЦКМ о дорожной сети, которые должны быть представлены в специальной форме - в виде графа, в котором все пересекающиеся дороги имеют общую вершину в перекрестках.
Задачи ОМП используют в ЦКМ данные о государственных (сухопутных и морских) и иных границах, заданные в специальной форме - в виде замкнутых контуров.
По типу информационных потребностей многие ФЗ можно отнести сразу к нескольким различным классам. В частности, задача определения оптимального района развертывания РРС может обладать свойствами классов ОХПМ и РДС, а в процессе решения для организации диалога с пользователем - свойствами класса ОКФ.

В связи с глубоким взаимопроникновением ГИС и других информационных технологий целесообразно рассмотреть взаимосвязь ГИТ с другими техноло­гиями.

Прежде всего, это графические технологии систем автоматизированного проектирования (САПР), векторных графических редакторов, и с другой сторо­ны - технологии реляционных СУБД. Большинство реализаций современных ГИТ в своей основе и представляет собой интеграцию этих двух типов инфор­мационных технологий. Следующий тип родственных информационных техно­логий - технологии обработки изображений растровых графических редакто­ров. Некоторые реализации ГИТ базируются на растровом представлении гра­фических данных. Поэтому очень многие современные ГИС общего назначения интегрируют возможности как векторного, так и растрового представления. В свою очередь, ряд технологий обработки изображений, предназначенных для работы с данными аэро- и космических съемок, очень близко примыкают к ГИТ, а иногда частично выполняют и их функции. Но обычно они к ГИТ ком­плементарны и имеют специальные средства для взаимодействия с ними (ERDAS LiveLink to ARC/INFO)

Близкородственны к ГИТ картографические (геодезические) технологии, применяющиеся при обработке данных полевых геодезических съемок и по­строении по ним карт (при построении карт по аэроснимкам с использованием фотограмметрических методик и при работах с цифровой моделью рельефа ме­стности). Здесь также наблюдается тенденция к интеграции, т.к. подавляющее число современных ГИС включают в себя средства координатной геометрии (COGO), которые позволяют непосредственно использовать данные полевых геодезических наблюдений, в том числе прямо с приборов с цифровой регист­рацией или с приемников спутниковой глобальной системы позиционирования (GPS). Фотограмметрические пакеты обычно ориентируются на совместную работу с ГИС и в ряде случаев включаются в ГИС как модули.

Сущность ГИТ проявляется в ее способности связывать с картографически­ми (графическими) объектами некоторую описательную (атрибутивную) ин­формацию (в первую очередь алфавитно-цифровую и иную графическую, зву­ковую и видеоинформацию). Как правило, алфавитно-цифровая информация организуется в виде таблиц реляционной БД. В простейшем случае каждому графическому объекту (точечному, линейному или площадному) ставится в со­ответствие строка таблицы - запись в БД. Использование такой связи и обеспе­чивает богатые функциональные возможности ГИТ. Эти возможности, естест­венно, различаются у разных систем, но есть базовый набор функций, обычно имеющийся в любой реализации ГИТ, например, возможность ответа на вопро­сы "что это?" указанием объекта на карте и "где это находится?" выделением на карте объектов, отобранных по некоторому условию в БД. К базовым можно также отнести ответ на вопрос "что рядом?" и его различные модификации. Ис­торически первое и наиболее универсальное использование ГИТ - это инфор­мационно-поисковые, справочные системы.

Таким образом, ГИТ можно рассматривать как некое расширение техноло­гии БД для координатно привязанной информации. Но даже в этом смысле она представляет собой новый способ интеграции и структурирования информации. Это обусловлено тем, что в реальном мире большая часть информации относит­ся к объектам, для которых важную роль играет их пространственное положе­ние, форма и взаиморасположение. Следовательно, ГИТ во многих приложени­ях значительно расширяют возможности обычных СУБД.

ГИТ, так же как и любая другая технология, ориентирована на решение оп­ределенного круга задач. Поскольку области применения ГИС достаточно ши­роки (военное дело, картография, география, градостроительство, организация транспортных диспетчерских служб, и т.д.), то ввиду специфики проблем, ре­шаемых в каждой из них, и особенностей, связанных с конкретным классом ре­шаемых задач и с требованиями, предъявляемыми к исходным и выходным данным, точности, техническим средствам и прочее, говорить о какой-то еди­ной ГИС-технологии достаточно проблематично.

Вместе с тем любая ГИТ включает в себя ряд операций, которые можно рас­сматривать как базовые. Они различаются в конкретных реализациях только де­талями, например, программным сервисом сканирования и постсканерной обра­ботки, возможностями геометрического преобразования исходного изображе­ния в зависимости от исходных требований и качества материала и т.д.

Поскольку приведенная модель является обобщенной, то естественно, что она либо не содержит отдельных блоков, свойственных какой-либо конкретной технологии, либо наоборот имеет в своем составе те блоки, которые в ряде слу­чаев могут отсутствовать.

По результатам анализа обобщенной модели ГИС-технологии можно выде­лить следующие базовые операции ГИТ:

  • редакционно-подготовительные работы, т. е. сбор, анализ и подготовка исходной информации (картографические данные, аэрофотоснимки, дан­ные дистанционного зондирования, результаты наземных наблюдений, статистическая информация и т.д.) для автоматизированной обработки;
  • проектирование геодезической и математической основ карт;
  • проектирование карт;
  • построение проекта цифровой тематической карты;
  • преобразование исходных данных в цифровую форму;
  • разработка макета тематического содержания карты;
  • определение методов автоматизированного построения тематического содержания;
  • формирование цифровой общегеографической основы создаваемой кар­ты;
  • создание цифровой тематической карты в соответствии с разработанным проектом;
  • получение выходной картографической продукции.

Для ввода исходной информации используются растровые сканирующие устройства, дигитайзеры, полутоновые сканеры аэрофотонегативов. Получен­ные цифровые массивы данных поступают в комплекс технических средств об­работки растровых и векторных данных, построенный на базе рабочих станций и персональных профессиональных ЭВМ. На этой же инструментальной базе осуществляются все этапы проектирования, преобразования исходной инфор­мации и создания цифровой тематической карты.

Сформированная цифровая картографическая модель поступает в комплекс технических средств формирования выходной картографической продукции, включающей в себя плоттеры, принтеры, специализированные устройства вы­вода на фотоноситель и т.д.

Исходные и обработанные цифровые данные хранятся в подсистеме архив­ного хранения данных, базирующейся в настоящее время на стримерах или на оптических дисках.

Области применения ГИТ в настоящее время чрезвычайно многообразны.

Прежде всего, это различные кадастры, системы управления распределен­ным хозяйством и инфраструктурой. Здесь развиты специализированные при­ложения, например, для систем: электрических сетей энергетической компании, кабельной сети телефонной или телевизионной компании, сложного трубопро­водного хозяйства большого химического завода, земельного кадастра, опери­рующие недвижимостью, а также такие приложения, как комплексные системы, обслуживающие многие составляющие инфраструктуры города или территории

и способные решать сложные задачи управления и планирования. Конкретные цели и задачи в таких системах очень разнообразны: от задач инвентаризации и учета, справочных систем общего пользования до налогообложения, градо- строительно-планировочных задач, планирования новых транспортных мар­шрутов и оптимизации перевозок, распределения сети ресурсов и услуг (скла­дов, магазинов, станций скорой помощи, пунктов проката автомобилей).

Еще одной развитой областью применения ГИТ является учет, изучение и использование природных ресурсов, включая сюда и охрану окружающей сре­ды. Здесь также встречаются как комплексные системы, так и специализиро­ванные: для лесного хозяйства, водного хозяйства, изучения и охраны дикой фауны и флоры и т.д. К этой области применения непосредственно примыкает использование ГИТ в геологии, как в научных, так и в практических ее задачах. Это не только задачи информационного обеспечения, но и, например, задача прогнозирования месторождений полезных ископаемых, контроль экологиче­ских последствий разработок и т.п. В геологических применениях, как и в эко­логических, велика роль приложений, требующих сложного программирования или комплексирования ГИТ со специфическими системами обработки и моде­лирования. Особенно в этом плане выделяются приложения в области нефти и газа. Здесь на стадии поисков и разведки широко используются данные сейсмо­разведки и весьма специфическое и развитое ПО по их обработке и анализу. Ве­лика потребность в комплексных решениях, увязывающих собственно геологи­ческие и иные проблемы, что невозможно решить без привлечения универсаль­ных ГИС.

Отдельно следует выделить сугубо транспортные задачи. Среди них: плани­рование новых маршрутов транспорта и оптимизация процесса перевозок с воз­можностью учета распределения ресурсов и меняющейся транспортной обста­новки (ремонты, пробки, таможенные барьеры). Особенно перспективными в стратегическом плане предполагаются навигационные системы, особенно бази­рующиеся на спутниковых системах навигации с использованием цифровой картографии.

Характерной чертой внедрения ГИТ в настоящее время является интеграция систем и баз данных в национальные, международные и глобальные информа­ционные структуры. К глобальным проектам относится, например, GDPP - "Проект глобальной базы данных", разрабатываемый в рамках Международной геосферно-биосферной программы. На национальном уровне существуют ГИС в США, Канаде, Франции, Швеции, Финляндии и других странах. В России в настоящее время разрабатываются региональные ГИС, в частности, для ведения земельного кадастра и муниципального управления, а также ведомственные ГИС, например, в Министерстве внутренних дел.

Анализ существующего на сегодняшний день опыта применения ГИТ пока­зывает, что основной формой применения ГИТ является различные по целям, сложности, составу и возможностям ГИС.

Современные ГИС представляют собой новый тип интегрированных систем, которые, с одной стороны, включают методы обработки данных существующих автоматизированных систем, а с другой - обладают спецификой в организации и обработке данных

Так как в ГИС осуществляется комплексная обработка информации (от ее сбора до хранения, обновления и предоставления), их можно рассматривать со следующих различных точек зрения:

  • ГИС как система управления - предназначена для обеспечения поддерж­ки принятия решений на основе использования картографических дан­ных;
  • ГИС как автоматизированная информационная система - объединяет ряд технологий известных информационных систем (САПР и других);
  • ГИС как геосистема - включает технологии фотометрии, картографии;
  • ГИС как система, использующая БД, - характеризуется широким набо­ром данных, собираемых с помощью разных методов и технологий;
  • ГИС как система моделирования, система предоставления информации - является развитием систем документального оборота, систем мультиме­диа и т.д.

ГИС с развитыми аналитическими возможностями близки к системам стати­стического анализа и обработки данных, причем в ряде случаев они интегриро­ваны в единые системы, например:

имплантация в современную ГИС ARC/INFO мощного статистического пакета S-PLUS;

добавление некоторых возможностей пространственной статистики и картографической визуализации в массовые статистические пакеты (SYSTATfor Windows);

развитие собственной ГИС в рамках пакета SAS - лидера среди систем обработки числовой информации.

Наиболее развитые ГИС (обычно с сильной поддержкой и растровой моде­ли), имеющие хорошие средства программирования, широко используются для моделирования природных и техногенных процессов, в том числе распростра­нения загрязнений, лесных пожаров и др. Некоторые обычные СУБД, рабо­тающие в графических средах типа MS Windows, также включают в себя про­стейшие средства картографической визуализации.

Наличие широкого спектра тенденций развития в разных областях информа­ционных технологий, интересы которых сходятся в области ГИТ, а также появ­ление универсальных пакетов широкого применения привело к тому, что гра­ницы определения ГИТ становятся менее четкими. Поэтому в настоящее время сложилось понятие полнофункциональная ГИС (full GIS).

Современная полнофункциональная ГИС - это многофункциональная ин­формационная система, предназначенная для сбора, обработки, моделирования и анализа пространственных данных, их отображения и использования при ре­шении расчетных задач, подготовке и принятии решений. Основное назначение полнофункциональной ГИС заключается в формировании знаний о Земле, от­дельных территориях, местности, а также своевременном доведении необходимых и достаточных пространственных данных до пользователей с целью дос­тижения наибольшей эффективности их работы.

Полнофункциональная ГИС должна обеспечивать:

  • двустороннюю связь между картографическими объектами и записями табличной базы данных;
  • управление визуализацией объектов, обеспечивающее выбор состава и формы отображения;
  • работу с точечными, линейными и площадными объектами;
  • ввод карт с дигитайзера или сканера и их редактирование;
  • поддержку топологических взаимоотношений между объектами и про­верку с их помощью геометрической корректности карты, в т.ч. замкну­тости площадных объектов, связности, прилегания и др.;
  • поддержку различных картографических проекций;
  • геометрические измерения на карте длины, периметра, площади и др.;построение буферных зон вокруг объектов и реализацию других овер­лейных операций;
  • создание собственных обозначений, в том числе новых типов маркерных знаков, типов линий, типов штриховок и др.;создание дополнительных элементов оформления карты, в частности подписей, рамок, легенд;
  • вывод высококачественных твердых копий карт;решение транспортных и других задач на графах, например, определение кратчайшего пути и т.п.;
  • работу с топографической поверхностью.

Помимо полнофункциональных ГИС общего назначения, выделяют специа­лизированные, которые часто имеют нечеткие границы со специализированны­ми пакетами, не являющимися в этом смысле ГИС. Например, ГИС, ориентиро­ванные на задачи планирования связи, транспортные и навигационные задачи, задачи инженерных изысканий и проектирования сооружений.

Неспециализированные ГИС более низкого уровня, чем полнофункциональ­ные системы общего назначения, обычно называют "персональными системами картографической визуализации" {desktop mapping systems, desktop GIS), иногда даже отделяя этот класс систем от собственно ГИС. Отличительной их чертой являются, прежде всего, ограниченные аналитические возможности (например, отсутствуют оверлейные операции для площадных объектов) и слабые возмож­ности ввода и редактирования картографической основы. Типичным примером такой системы является ГИС Maplnfo, в которой за счет своей меньшей сложно­сти более проста в обучении и использовании и более доступна массовому пользователю.

К настоящему времени число ГИС-пакетов, предлагаемых на рынке, исчис­ляется несколькими тысячами. Однако в большинстве это специализированные системы. Реальных полнофункциональных ГИС-пакетов общего назначения на рынке несколько десятков. В основном программное обеспечение для ГИС раз­рабатывают специализированные фирмы, только в некоторых случаях это про­дукты крупных фирм, для которых ГИС - не основной продукт (IBM, Intergraph, Computervision, Westinghouse Electric Corp., McDonnel Douglas, Siemens Nixdorf). По числу известных пакетов и по числу инсталляций преобладают ПК (MS DOS, MS Windows) и UNIX- рабочие станции.

Следует отметить, что в настоящее время полнофункциональные ГИС обще­го назначения в основном ориентированы на рабочие станции с операционной системой UNIX. На ПК, как правило, функционируют системы с редуцирован­ными возможностями. Отчасти это определяется спецификой пользователей ПК, для многих из которых простая ГИС нужна только как дополнение к обыч­ному офисному ПО. Но главная причина - в требованиях, которые мощная ГИС предъявляет к аппаратным средствам компьютера.

Топологические векторные структуры данных по своей природе сложны, а процессы их использования требуют интенсивных расчетов, существенно боль­ших, чем работа с обычной векторной графикой, в том числе и в части операций с плавающей точкой. Серьезные приложения часто требуют работы с длинными целыми и действительными числами двойной точности. Для работы с ГИС ну­жны дисплеи высокого разрешения и быстрый графический адаптер или акселе­ратор, причем требования к палитре жестче, чем в САПР. Они скорее аналогич­ны требованиям к издательским системам профессиональной полиграфии. Осо­бенно высокие требования к скорости отрисовки предъявляет типичная для ГИС (и менее типичная для САПР) задача заливки штриховками большого чис­ла замкнутых многоугольников (полигонов) сложной формы.

Серьезные проекты с использованием ГИС требуют работы с большими объемами данных, от сотен мегабайт до нескольких десятков гигабайт. Особен­но высокие требования к объемам дисковой и основной памяти, а также к быст­родействию компьютера, предъявляют ГИС с обработкой изображения в виде растровых структур, например, в задачах геометрической коррекции аэросним­ков, моделирования природных процессов и при работе с рельефом земной по­верхности. Один цветной аэроснимок высокого разрешения стандартного фор­мата, если перевести его в цифровую форму без потери "точности" (24 bit, 1200 dpi) занимает около 200 Мб. Во многих задачах регионального характера требу­ется использовать совмещенную и геометрически откорректированную мозаику из мйогих таких снимков, тем более, что признано целесообразным использо­вать растровую подложку из такой мозаики аэро- или космических снимков (digital orthophoto) в качестве базового слоя для векторных карт, т.е. фотосним­ки "впечатываются" в изображение карты. То же замечание справедливо и для работы с аэрокосмическими снимками, которые, как правило, должны обраба­тываться различными способами, чтобы избирательно выделить на них различ­ную информацию (операции различного рода фильтрации, преобразования кон­траста, операции с использованием быстрого преобразования Фурье, классифи­кационные алгоритмы, дискриминантный, кластерный и факторный анализ, а также метод главных компонент). Поэтому вместо того, чтобы хранить десятки версий обработки, что потребовало бы до сотен Гбайт на 1 кадр, рациональнее

выполнять их по требованию. Современные специализированные рабочие стан­ции справляются с такой задачей, для ПК же она еще трудна. Иногда операция с одним кадром на ПК длится несколько минут. Когда необходимо моделировать сложные природные процессы, в частности распространение загрязнения, лес­ных пожаров, либо применять данные аэрокосмических съемок, использование специализированной рабочей станции неизбежно.

Следует отметить, что скорость накопления объемов аэрокосмических (осо­бенно космических) данных пока идет в том же темпе или даже опережает тем­пы роста вычислительных мощностей ПК и рабочих станций. Действительно, ежемесячно над каждым участком Земли размером с большой город собирается не менее 800-1000 Мбайт спутниковых изображений. И если даже учесть, что половина их по условиям облачности непригодна для использования в ГИТ- приложениях, все равно это составляет огромный поток. И еще одно замечание: разрешение систем сбора дистанционной информации постоянно растет, а уве­личение геометрического разрешения на местности с 20 до 10 м увеличивает объем данных в 4 раза. Так что каждые 2-4 года компьютерная система должна в несколько раз увеличивать свою производительность, чтобы не отстать от темпов развития устройств сбора информации. Отсюда ясно, что еще длитель­ное время технической основой мощных полнофункциональных ГИС с анали­тическими функциями будут оставаться специализированные рабочие станции.

Еще одним моментом, который обуславливает необходимость обращения существенного внимания к рабочим WVZY-станциям является тот факт, что се­годня основные пакеты наиболее "серьезных" ГИС еще не переведены на ПК.

Основными направлениями использования ПК при работе с ГИС в настоя­щее время являются:

  • использование ПК в качестве терминалов совместно с рабочими стан­циями для работы с большими ГИС (ARC/INFO);
  • использование ПК в качестве станций ввода и модификации цифровых карт местности с дигитайзера или сканера (PC ARC!INFO, ArcCAD);
  • использование ПК для ГИТ-проектов с небольшим объемом единовре­менно активной информации (PC ARC/INFO, ArcCAD, ArcView);
  • использование ПК в учебных целях, для знакомства с методологией ГИТ;
  • использование ПК на начальных стадиях больших проектов, когда объем базы данных еще не вырос, не требуется полная функциональность на больших объемах и требуется еще доказывать полезность использования ГИТ и необходимость вложения серьезных средств.

Так как современные ГИС представляют собой, как правило, сложные про­граммно-информационные комплексы, разработанные специально для приме­нения в конкретных областях информационной деятельности или для решения специализированных задач, то в их состав входят:

  • операционная система;
  • ядро прикладного программного обеспечения;
  • модули тематической обработки данных;
  • интерактивный интерфейс пользователя.

К модулям тематической обработки данных относятся:

  • программное обеспечение ввода-вывода данных;
  • прикладное программное обеспечение анализа векторной и растровой информации;
  • СУБД;
  • программное обеспечение распознавания образов;
  • программное обеспечение выбора картографической проекции;
  • программное обеспечение для преобразования изображений;
  • программное обеспечение картографической генерализации;
  • программное обеспечение генерации условных знаков и т.д..

Ключевые слова

ГЕОГРАФИЧЕСКИЕ ИНФОРМАЦИОННЫЕ СИСТЕМЫ / ИМПОРТОЗАМЕЩЕНИЕ / АНАЛИЗ ОТЕЧЕСТВЕННЫХ ГИС / ПРОГРАММНЫЕ ПРОДУКТЫ / GEOGRAPHICAL INFORMATION SYSTEMS / IMPORT SUBSTITUTION / ANALYSIS OF DOMESTIC GIS / SOFTWARE PRODUCTS

Аннотация научной статьи по компьютерным и информационным наукам, автор научной работы - Яроцкая Елена Вадимовна, Патов Али Мухаммедович

В настоящее время экономика страны в своем развитии взяла направление в сторону импортозамещения . Развитие отечественных информационных технологий и программного обеспечения является одним из приоритетных направлений. В статье анализируется состояние отечественного рынка разработчиков географических информационных систем (ГИС). Рассматривается возможность импортозамещения зарубежных программных продуктов обработки пространственных данных аналогами российского производства. В качестве объектов анализа выступили такие программные продукты как ГеоГраф, ИнГео, GeoMixer, ZuluGIS, IndorGIS, Панорама. В результате анализа выяснилось, что существует множество проблем на пути полного импортозамещения зарубежных ГИС, такие как узкая специализация отечественных ГИС, слабая маркетинговая политика по распространению на рынок программных продуктов , непродуманность интерфейса. Но потенциал развития отечественных ГИС очень велик. Одним из главных преимуществ российских информационных технологий в обработке пространственных данных это то, что разработчики более гибко могут реагировать на изменение конъюнктуры рынка

Похожие темы научных работ по компьютерным и информационным наукам, автор научной работы - Яроцкая Елена Вадимовна, Патов Али Мухаммедович

  • Применение геоинформационных систем в землеустройстве и кадастре для управления земельными ресурсами на муниципальном уровне в Карачаево-Черкесской Республике

    2017 / Яроцкая Е.В., Патов А.М.
  • Визуально-интерактивная технология интеграции САПР и ГИС

    2010 / Дорофеев Сергей Юрьевич, Зайцева Мария Александровна
  • Организация пространственных данных на основе стандартов и свободно распространяемых программных продуктов

    2013 / Комоско Владимир, Серебряков Сергей
  • Анализ программ ГИС класса в транспортной логистике

    2013 / Плотко К.О., Долгова Т.Г.
  • Инновации и информационные технологии в бизнесе: основные тенденции и перспективы развития

    2012 / Бутенко Яна Андреевна
  • Программный модуль построения и анализа векторных полей

    2017 / Коробков Виктор Николаевич
  • ПРИМЕНЕНИЕ МЕТОДА СЕГМЕНТИРОВАНИЯ ОБЪЕКТОВ В Quantum GIS В РАМКАХ ПОДГОТОВИТЕЛЬНОГО ЭТАПА ПРОВЕДЕНИЯ КАДАСТРОВОЙ ОЦЕНКИ ЗЕМЕЛЬ СЕЛЬСКОХОЗЯЙСТВЕННОГО НАЗНАЧЕНИЯ

    2019 / Перов А. Ю., Шумаева К. В., Ярыш С. С.
  • Реализация подсистемы ГИС в среде МСВС информационно-телекоммуникационного комплекса оповещения и связи

    2011 / Пономарев Андрей Александровичв, Игумнов Артем Олегович
  • Проект интегрированной геоинформационной системы ИНЦ со РАН для поддержки фундаментальных исследований

    1998 / Бычков И. В., Васильев С. Н., Кузьмин В. А., Ступин Г. В.
  • Анализ существующих программных комплексов для построения геоинформационной системы управления работой структурных подразделений ОАО «РЖД»

    2017 / Никитчин Андрей Андреевич, Богданов Николай Александрович, Рыбкин Владимир Сергеевич

DEVELOPMENT OF DOMESTIC GEOGRAPHICAL INFORMATION SYSTEMS IN THE CONDITIONS OF IMPORT SUBSTITUTION

Nowadays, the economy of the country has taken a direction towards import substitution in its development. The development of the domestic information technology and software is one of the priorities. The article analyzes the state of the domestic market, development of geographic information systems developers. The possibility of import substitution of foreign software products by spatial data analogues in Russia is considered. As objects of analysis became programs such as GeoGraf, InGeo, GeoMixer, ZuluGIS, IndorGIS, Panorama. As a result of the analysis we revealed that there are a lot of problems in the way of the full import substitution of foreign GIS, such as the specialization of domestic GIS, a weak marketing strategy for the distribution to market of software products , crudity of interface. However, the potential of development of domestic GIS is very large. One of the main advantages of the Russian information technology in the processing of spatial data is that developers can respond more flexibly to changing market conditions

Для эффективного управления регионами необходимо владеть достоверной и комплексной информацией об их экономическом состоянии и потенциале, в том числе о наличии и размещении полезных ископаемых, лесных, водных и земельных ресурсов, об экономическом развитии территорий, о размещении предприятий промышленности и сельского хозяйства, расселении населения, развитии дорожной сети, средств связи и других компонентов инфраструктуры, об экологическом состоянии территорий и другой информацией, необходимой для обоснованного принятия решений.

В России выделяются следующие территориальные уровни применения ГИС:

Глобальный уровень – Россия на глобальном и евразийском фоне масштаб 1:45 000 000 – 1:100 000 000;

Всероссийский уровень – вся территория страны, включая прибрежные акватории и приграничные районы, масштаб 1:2 500 000 – 1:20 000 000;

Региональный уровень – крупные природные и экономические регионы, субьекты федерации, масштаб 1:500 000 – 1:4 000 000;

Локальный уровень – области, районы, национальные парки, ареал кризисных ситуаций – 1:50 000 – 1 000 000;

Муниципальный уровень – города, городские районы, пригородные зоны, масштаб 1:50 000 и крупнее.

К проблемам ГИС Российской Федерации следует отнести:

Отсутствует, соответствующая современным требованиям система обеспечения органов государственной власти информацией, необходимой для эффективного управления территориальным развитием;

Низкий уровень автоматизации сбора, обработки, обновления и передачи информации, наличие межведомственных барьеров, что затрудняет своевременное получение информации органами государственной власти. Существующие в настоящее время ведомственные системы сбора и анализа данных по отдельным видам объектов управления, организационно и методически разрознены, что не позволяет эффективно взаимодействовать при принятии и обосновании конкретных управленческих решений по развитию территорий. Любой проект ГИС, разработанный на районном, городском или региональном уровне сталкивается с необходимостью существенных затрат по сбору первичных данных. Для большинства пользователей ГИС затраты на сбор данных являются чрезмерно большими (до 80% от общего объема затрат);

Отсутствие реальных технологий обновления данных. Обновление данных также требует существенных материальных затрат, однако без развитой системы обновления данных любая ГИС нежизнеспособна. Поэтому, создавая ГИС, необходимо тщательно отработать технологию обновления данных. Развитие секторов рынка, связанных с получением и использованием данных зондирования и других геоданных не возможно без решения задач автоматизированной актуализации данных;

Отсутствуют национальные стандарты на классификацию и кодирование топографической информации, на форматы обмена цифровыми топографическими данными, что может потребовать серьезных дополнительных затрат при объединении локальных, например ведомственных ГИС в объщегосударственную ГИС.

Государственная стратегия Российской Федерации в области ГИС определена постановлением Правительства Российской Федерации от 16 января 1995 г. N40 "Об организации работ по созданию геоинформационной системы органов государственной власти". Концепция создания ГИС для органов государственной власти региона (области) предусматривает выполнение мероприятий по внедрению в органы управления современных геоинформационных технологий для комплексного анализа многоаспектной, разнородной информации при решении задач управления развитием региона (области) и ее территорий, по формированию единого геоинформационного пространства.

В настоящее время более 100 организаций и фирм распространяет в России отечественные и зарубежные системы для создания ГИС-технологий. Эти системы различаются как назначением, функциональными возможностями, так и требуемыми вычислительными ресурсами и стоимостью. Большинство инструментальных систем ориентированы на использование PC.

В зависимости от широты возможностей, ГИС общего назначения разделяются на полнофункциональные системы и системы картографической визуализации. Системы картографической визуализации называются настольными или персональными геоинформационными системами, обладают меньшей сложностью и стоимостью, ориентированы на вычислительные ресурсы персональных компьютеров, хотя имеют ограниченные аналитические возможности и слабые возможности редактирования картографической основы. Полнофункциональные ГИС сложны, удовлетворительно функционируют в полном объеме только на рабочих станциях и позволяют создавать проблемно-ориентированные геоинформационные системы с развитыми средствами пространственного анализа, что значимо, например для городских и муниципальных служб при решении задач в области экологии.

К наиболее развитым полнофункциональным ГИС относятся программные продукты фирмы ESRI США (ARC/INFO), фирмы Micro-station США (MGE Intergraph) и пакет фирмы Siemens Nixdorf Германия (SICAD). Лидером в области систем обработки аэрокосмических снимков считается система ERDAS Imagine США. В числе отечественных ГИС - векторный топологический редактор GeoDraw и средство композиционного построения цифровых карт и их анализа GeoGraph.

В списке настольных ГИС - программные средства ARC View (ESRI) и Maplnfo. Например, ARC View позволяет создавать самостоятельные проблемно-ориентированные прикладные системы и решать задачи муниципального управления, градостроительства, экологии. На ее основе создается ГИС мониторинга лесных пожаров России информационная система экологического мониторинга г. Москвы. Она применяется также в информационной системе МЧС России. Система ARC View GIS реализует объектно-ориентированный подход к управлению географической информацией и все более приближается по своим функциям к возможностям полнофункциональных систем, сохраняя при этом все преимущества настольной ГИС. Она позволяет выполнять анализ информации с построением графиков и диаграмм, преобразование картографических проекций непосредственно в процессе работы с картой, комбинации сложного логического, пространственного запросов, запросы через таблицы, диаграммы и графики.

ГИС России как система и ее методология совершенствуются и развиваются в следующих направлениях:

Развитие теории и практики информационных систем;

Изучение и обобщение опыта работы с пространственными данными;

Исследование и разработка концепций создания системы пространственно-временных моделей;

Совершенствование технологий автоматизированного изготовления электронных и цифровых карт;

Разработка технологий визуальной обработки данных;

Разработка методов поддержки принятия решений на основе интегрированной пространственной информации;

Интеллектуализация ГИС.

Геомаркетинг

Геомаркетинг- это понятие, обьединяющее в себе некий комплекс инструментов и методов по сбору, обработке, анализу и визуализации пространственной информации для оперативных и стратегических задач компаний.

Методология геомаркетинга основана на методологии информационного маркетинга. Геомаркетинговые информационные системы возникли на основе интеграции с маркетинговыми информационными системами.

Геомаркетинговые информационные системы работают с пространственно-локализованными данными, что обеспечивает:

Выявление скрытых закономерностей поведения спроса на продукцию в пространственно-временном разрезе;

Возможность применения пространственного анализа объектов для выявления их свойств и отношений не видимых при обычном анализа, например по табличным данным;

Глобальную интеграцию данных, позволяющую в совокупности, комплексно изучать объекты и явления;

Применение визуальных методов представления и обработки статистической информации.

Другими словами, геомаркетинг выгодно применять как эффективную рыночную информационную технологию.

Виды геомаркетинга:

- геомаркетинг мест, включает геомаркетинг жилья (застройка, предложения на продажу или внаем…), зон хозяйственной застройки (освоение участков, сдача в аренду и продажа заводов, магазинов и т.д.), геомаркетинг инвестиций в земельную собственность, мест отдыха и туризма;

- природоресурсный геомаркетинг включает в себя хозяйственное освоение, продажу и привлечение инвестиций в природоресурсные региональные образования;

- стимулирующий геомаркетинг совокупностью мер преодолевает негативное отношение на товары и услуги ГИС;

- развивающий геомаркетинг развивает спрос на новые товары ГИС (отдельных лиц, организаций и в целом объщества);

- политический гаомаркетинг направлен не на формирование или удовлетворение спроса на конкретную продукцию, а на удовлетворение политических желаний.

Задачи, решаемые геомаркетингом для территориально-распределенной торгово-розничной сети:

Оптимальное планирование сети торговой розницы и сервиса;

Открытие торговой точки в оптимальном месте, с учетом критериев доступности, максимального охвата потребителей, их проживания и потоков;

Управление ассортиментом товаров и продвижением торгового предприятия;

Оперативный сбор и обновление информации о рынках и конкурентных предприятиях.

При выборе нового места расположения торгового предприятия проводится комплекс геоинформационных, экономических и статистических анализов с использованием космических снимков Земли высокого разрешения. Учитываются существующая инфраструктура компании, внешние социально-экономические показатели, конкурентная среда и др.:

1. Оценка привлекательности места.

1.1 Общая численность населения по зонам транспортной доступности.

1.2 Численность экономически активного населения (16-60 лет).

1.3 Оценка уровня дохода жителей внутри зоны 15-ти минутной транспортной доступности.

1.4 Оценка транспортной сети и автомобильных потоков.

1.5 Оценка пешеходных потоков.

2. Конкурентный анализ внутри зоны 15-ти минутной доступности.

2.1 Оценка основных конкурентов по зонам.

2.2 Сравнение плотности конкурентов в зависимости от зон. Описание конкурентной ситуации.

3. Прогноз развития функционального назначения территорий внутри зон.

3.1 Оценка инфраструктуры на настоящий момент.

3.2 Оценка интенсивности жилого строительства.

3.3 Оценка интенсивности строительства объектов торговли, развлечения и спорта.

3.4 Оценка развития инфраструктуры.

3.5 Прогноз изменения количества потребителей.

К примеру, при оценке привлекательности места стоит обратить внимание на следующие особенности прилегающей к магазину территории:

Направление потоков движения жителей и возможность перенаправить эти потоки создав, например дополнительные пешеходные переходы и светофоры, одностороннее движение автомобилей и т.п.;

Наличие удобного подъезда и полноценной парковки в соответствии с форматом магазина;

Наличие тротуаров, газонов, уличного освещения и т. д. в соответствии с имиджем открывающегося магазина;

Удобство подхода (подъезда) к магазину покупателей – исключение конкуренции с подъезжающими автомобилями чужих клиентов и жителей близлежащих домов;

Удобство для разгрузочно-погрузочных работ;

Наличие участков, пригодных для выносной торговли и проведения акций для привлечения интереса покупателей;

Отсутствие нежелательных соседствующих объектов.