Как работает метод main() в C? Несколько подробностей о функции main Что значит int main в c

Пожалуйста, приостановите работу AdBlock на этом сайте.

Итак, зачем нужны пользовательские функции? Пользовательские функции нужны для того, чтобы программистам было проще писать программы.

Помните, мы говорили о парадигмах программирования, а точнее о структурном программировании. Основной идеей там было то, что любую программу можно можно написать используя только три основных конструкции: следование, условие и цикл. Теперь к этим конструкциям мы добавим ещё одну – «подпрограммы» – и получим новую парадигму процедурное программирование» .

Отличие лишь в том, что отдельные кусочки нашей основной программы (в частности, повторяющиеся) мы будем записывать в виде отдельных функций (подпрограмм, процедур) и по мере необходимости их вызывать. По сути, программа теперь будет описывать взаимодействие различных функций.

Итак, в этом уроке мы подробно обсудим то, как функции устроены изнутри. А также научимся создавать свои собственные пользовательские функции.

Как устроены функции

Вспомним информацию с первого урока. Все функции, в том числе и те, которые пишет пользователь, устроены сходным образом. У них имеется две основных составных части: заголовок функции и тело функции.

Листинг 1.

Int main(void){ // заголовок функции // в фигурных скобках записано тело функции }

С телом функции всё ясно: там описывается алгоритм работы функции. Давайте разберёмся с заголовком. Он состоит из трёх обязательных частей:

  • тип возвращаемого значения;
  • имя функции;
  • аргументы функции.

Сначала записывается тип возвращаемого значения, например, int , как в функции main . Если функция не должна возвращать никакое значение в программу, то на этом месте пишется ключевое слово void . Казалось бы, что раз функция ничего не возвращает, то и не нужно ничего писать. Раньше, кстати, в языке Си так и было сделано, но потом для единообразия всё-таки добавили. Сейчас современные компиляторы будут выдавать предупреждения/ошибки, если вы не укажете тип возвращаемого значения.
В некоторых языках программирования функции, которые не возвращают никакого значения, называют процедурами (например, pascal). Более того, для создания функций и процедур предусмотрен различный синтаксис. В языке Си такой дискриминации нет.

После типа возвращаемого значения записывается имя функции. Ну а уж после имени указываются типы и количество аргументов, которые передаются в функцию.

Давайте посмотрим на заголовки уже знакомых нам функций.

Листинг 2.

// функция с именем srand, принимающая целое число, ничего не возвращает void srand(int) //функция с именем sqrt, принимающая вещественное число типа float, возвращает вещественное число типа float float sqrt(float) //функция с именем rand, которая не принимает аргументов, возвращает целое число int rand(void) //функция с именем pow, принимающая два аргумента типа double, возвращает вещественное число типа double double pow(double, double)

Как создать свою функцию

Для того чтобы создать свою функцию, необходимо её полностью описать. Тут действует общее правило: прежде чем использовать – объяви и опиши, как должно работать. Для этого вернёмся к схеме структуры программы на языке Си, которая у нас была в самом первом уроке. Отметим на ней те места, где можно описывать функции.

Рис.1 Уточнение структуры программы. Объявление функций.

Как видите, имеется аж два места, где это можно сделать.

Давайте посмотрим на пример, который иллюстрируют создание пользовательской функции вычисления максимального из двух чисел.

Листинг 3.

#include // объявляем пользовательскую функцию с именем max_num // вход: два целочисленных параметра с именами a и b // выход: максимальное из двух аргументов int max_num(int a, int b){ int max = b; if (a > b) max = a; return max; } //основная программа int main(void) { int x = 0, y = 0; int m = 0; scanf("%d %d", &x, &y); m = max_num(x,y); printf("max(%d,%d) = %d\n",x,y,m); return 0; }

Давайте я подробно опишу, как будет работать эта программа. Выполняется тело функции main . Создются целые переменные x , y и m . В переменные x и y считываются данные с клавиатуры. Допустим мы ввели 3 5 , тогда x = 3 , y = 5 . Это вам всё и так должно быть понятно. Теперь следующая строчка

Листинг 4.

M = max_num(x,y);

Переменной m надо присвоить то, что находится справа от знака = . Там у нас указано имя функции, которую мы создали сами. Компьютер ищет объявление и описание этой функции. Оно находится выше. Согласно этому объявлению данная функция должна принять два целочисленных значения. В нашем случае это значения, записанные в переменных x и y . Т.е. числа 3 и 5 . Обратите внимание, что в функцию передаются не сами переменные x и y , а только значения (два числа), которые в них хранятся. То, что на самом деле передаётся в функцию при её вызове в программе, называется фактическими параметрами функции.

Теперь начинает выполняться функция max_num . Первым делом для каждого параметра, описанного в заголовке функции, создается отдельная временная переменная. В нашем случае создаются две целочисленных переменных с именами a и b . Этим переменным присваиваются значения фактических параметров. Сами же параметры, описанные в заголовке функции, называются формальными параметрами. Итак, формальным параметрам a и b присваиваются значения фактических параметров 3 и 5 соответственно. Теперь a = 3 , b = 5 . Дальше внутри функции мы можем работать с этими переменными так, как будто они обычные переменные.

Создаётся целочисленная переменная с именем max , ей присваивается значение b . Дальше проверяется условие a > b . Если оно истинно, то значение в переменной max следует заменить на a .

Далее следует оператор return , который возвращает в вызывающую программу (функцию main ) значение, записанное в переменной max , т.е. 5 . После чего переменные a , b и max удаляются из памяти. А мы возвращаемся к строке

Листинг 5.

M = max_num(x,y);

Функция max_num вернула значение 5 , значит теперь справа от знака = записано 5 . Это значение записывается в переменную m. Дальше на экран выводится строчка, и программа завершается.

Внимательно прочитайте последние 4 абазаца ещё раз, чтобы до конца уяснить, как работает программа.

А я пока расскажу, зачем нужен нижний блок описания функций. Представьте себе, что в вашей программе вы написали 20 небольших функций. И все они описаны перед функцией main . Не очень-то удобно добираться до основной программы так долго. Чтобы решить эту проблему, функции можно описывать в нижнем блоке.

Но просто так перенести туда полностью код функции не удастся, т.к. тогда нарушится правило: прежде чем что-то использовать, необходимо это объявить. Чтобы избежать подобной проблемы, необходимо использовать прототип функции.

Прототип функции полностью повторяет заголовок функции, после которого стоит ; . Указав прототип в верхнем блоке, в нижнем мы уже можем полностью описать функцию. Для примера выше это могло бы выглядеть так:

Листинг 6.

#include int max_num(int, int); int main(void) { int x =0, y = 0; int m = 0; scanf("%d %d", &x, &y); m = max_num(x,y); printf("max(%d,%d) = %d\n",x,y,m); return 0; } int max_num(int a, int b){ int max = b; if (a > b) max = a; return max; }

Всё очень просто. Обратите внимание, что у прототипа функции можно не указывать имена формальных параметров, достаточно просто указать их типы. В примере выше я именно так и сделал.

Эти обучающие уроки предназначены для всех, независимо от того, новичок вы в программировании или у вас уже есть обширный опыт программирования на других языках! Данный материал для тех, кто хочет изучить языки С/С++ от самых его основ до сложнейших конструкций.

C++ является языком программирования, знание этого языка программирования позволит вам управлять вашим компьютером на высшем уровне. В идеале вы сможете заставить компьютер сделать всё, что сами захотите. Наш сайт поможет вам в освоении языка программирования C++.

Установка /IDE

Самое первое, что вы должны сделать, прежде чем приступить к изучении C++, это убедиться, что у вас есть IDE — интегрированная среда разработки (программа в которой вы будете программировать). Если у вас нет IDE, тогда вам сюда . Когда определитесь с выбором IDE, установите её и потренируйтесь создавать простые проекты.

Введение в язык C++

Язык C++ представляет собой набор команд, которые говорят компьютеру, что необходимо сделать. Этот набор команд, обычно называется исходный код или просто код. Командами являются или «функции» или «ключевые слова». Ключевые слова(зарезервированные слова С/С++) являются основными строительными блоками языка. Функции являются сложными строительными блоками, так как записаны они в терминах более простых функций — вы это увидите в нашей самой первой программе, которая показана ниже. Такая структура функций напоминает содержание книги. Содержание может показывать главы книги, каждая глава в книге может иметь своё собственное содержание, состоящее из пунктов, каждый пункт может иметь свои подпункты. Хотя C++ предоставляет много общих функций и зарезервированных слов, которые вы можете использовать, все-таки возникает потребность в написании своих собственных функций.

В какой же части программы начало? Каждая программа в C++ имеет одну функцию, её называют главная или main-функция, выполнение программы начинается именно с этой функции. Из главной функции, вы также можете вызывать любые другие функции, неважно, являются ли они написанными нами, или, как упоминалось ранее, предоставляются компилятором.

Так как же получить доступ к этим Стандартным функциям? Чтобы получить доступ к стандартным функциям, которые поставляются с компилятором, необходимо подключить заголовочный файл используя препроцессорную директиву — #include . Почему это эффективно? Давайте посмотрим на примере рабочей программы:

#include << "Моя первая программа на С++\n"; cin.get(); }

Рассмотрим подробно элементы программы. #include это директива «препроцессору», которая сообщает компилятору поместить код из заголовочного файла iostream в нашу программу перед тем как создать исполняемый файл. Подключив к программе заголовочный файл вы получаете доступ к множеству различных функций, которые можете использовать в своей программе. Например, оператору сout требуется iostream . Строка using namespace std; сообщает компилятору, что нужно использовать группу функций, которые являются частью стандартной библиотеки std . В том числе эта строка позволяет программе использовать операторы, такие как cout . Точка с запятой является частью синтаксиса C++. Она сообщает компилятору, что это конец команды. Чуть позже вы увидите, что точка с запятой используется для завершения большинства команд в C++.

Следующая важная строка программы int main() . Эта строка сообщает компилятору, что есть функция с именем main , и что функция возвращает целое число типа int . Фигурные скобки { и } сигнализируют о начале { и конце } функции. Фигурные скобки используются и в других блоках кода, но обозначают всегда одно — начало и конец блока, соответственно.

В C++ объект cout используется для отображения текста (произносится как «Cи аут»). Он использует символы << , известные как «оператор сдвига», чтобы указать, что отправляется к выводу на экран. Результатом вызова функции cout << является отображение текста на экране. Последовательность \n фактически рассматривается как единый символ, который обозначает новую строку (мы поговорим об этом позже более подробно). Символ \n перемещает курсор на экране на следующую строку. Опять же, обратите внимание на точку с запятой, её добавляют в конец, после каждого оператора С++.

Следующая команда cin.get() . Это еще один вызов функции, которая считывает данные из входного потока данных и ожидает нажатия клавиши ENTER. Эта команда сохраняет консольное окно от закрытия, до тех пор пока не будет нажата клавиша ENTER. Это даёт вам время для того, чтобы посмотреть результат выполнения программы.

По достижении конца главной функции (закрывающая фигурная скобка), наша программа вернёт значение 0 для операционной системы. Это возвращаемое значение является важным, поскольку, проанализировав его, ОС может судить о том, успешно завершилась наша программа или нет. Возвращаемое значение 0 означает успех и возвращается автоматически (но только для типа данных int , другие функции, требуют вручную возвращать значение), но если бы мы хотели вернуть что-то другое, например 1, мы должны были бы сделать это вручную.

#include using namespace std; int main() { cout<<"Моя первая программа на С++\n"; cin.get(); return 1; }

Для закрепления материала, наберите код программы в своей IDE и запустите его. После того, как программа запустилась, и вы увидели результат работы, поэкспериментируйте немного с оператором cout . Это поможет вам привыкнуть к языку.

Обязательно комментируйте свои программы!

Добавляйте комментарии к коду, чтобы сделать его понятнее не только для себя но и для других. Компилятор игнорирует комментарии при выполнении кода, что позволяет использовать любое количество комментариев, чтобы описать реальный код. Чтобы создать комментарий используйте или // , который сообщает компилятору, что остальная часть строки является комментарием или /* и затем */ . Когда вы учитесь программировать, полезно иметь возможность комментировать некоторые участки кода, для того, чтобы увидеть, как изменяется результат работы программы. Подробно прочитать о технике комментирования, вы можете .

Что делать со всеми этими типами переменных?

Иногда это может сбить с толку — иметь несколько типов переменных, когда кажется, что некоторые типы переменных являются избыточными. Очень важно использовать правильный тип переменной, так как некоторым переменным, требуется больше памяти, чем другим. Кроме того, из-за способа хранения в памяти, числа с плавающей точкой, типы данных float и double являются «неточным», и не должны использоваться, когда необходимо сохранить точное целое значение.

Объявление переменных в C++

Чтобы объявить переменную используется синтаксис тип <имя>; . Вот некоторые примеры объявления переменных:

Int num; char character; float num_float;

Допустимо объявление нескольких переменных одного и того же типа в одной строке, для этого каждая из них должна быть отделена запятой.

Int x, y, z, d;

Если вы смотрели внимательно, вы, возможно, видели, что объявление переменной всегда сопровождается точкой с запятой. Подробнее о соглашении — «об именовании переменных», можно .

Распространенные ошибки при объявлении переменных в C++

Если вы попытаетесь использовать переменную, которую не объявили, ваша программа не будет скомпилирована, и вы получите сообщение об ошибке. В C++, все ключевые слова языка, все функции и все переменные чувствительны к регистру.

Использование переменных

Итак, теперь вы знаете, как объявить переменную. Вот пример программы, демонстрирующий использование переменной:

#include using namespace std; int main() { int number; cout << "Введите число: "; cin >> number; cin.ignore(); cout << "Вы ввели: "<< number <<"\n"; cin.get(); }

Давайте рассмотрим эту программу и изучим её код, строку за строкой. Ключевое слово int говорит о том, что number — целое число. Функция cin >> считывает значение в number , пользователь должен нажать ввод после введенного числа. cin.ignore () — функция, которая считывает символ и игнорирует его. Мы организовали свой ввод в программу, после ввода числа, мы нажимаем клавишу ENTER, символ который также передаётся в поток ввода. Нам это не нужно, поэтому мы его отбрасываем. Имейте в виду, что переменная была объявлена целого типа, если пользователь попытается ввести десятичное число, то оно будет обрезано (то есть десятичная часть числа будет игнорироваться). Попробуйте ввести десятичное число или последовательность символов, когда вы запустите пример программы, ответ будет зависеть от входного значения.

Обратите внимание, что при печати из переменной кавычки не используются. Отсутствие кавычек сообщает компилятору , что есть переменная, и, следовательно, о том, что программа должна проверять значение переменной для того, чтобы заменить имя переменной на её значение при выполнении. Несколько операторов сдвига в одной строке вполне приемлемо и вывод будет выполняться в том же порядке. Вы должны разделять строковые литералы (строки, заключенные в кавычки) и переменные, давая каждому свой оператор сдвига << . Попытка поставить две переменные вместе с одним оператором сдвига << выдаст сообщение об ошибке . Не забудьте поставить точку с запятой. Если вы забыли про точку с запятой, компилятор выдаст вам сообщение об ошибке при попытке скомпилировать программу.

Изменение и сравнение величин

Конечно, независимо от того, какой тип данных вы используете, переменные не представляют особого интереса без возможности изменения их значения. Далее показаны некоторые операторы, используемые совместно с переменными:

  • * умножение,
  • - вычитание,
  • + сложение,
  • / деление,
  • = присвоение,
  • == равенство,
  • > больше,
  • < меньше.
  • != неравно
  • >= больше или равно
  • <= меньше или равно

Операторы, которые выполняют математические функции , должны быть использованы справа от знака присвоения, для того, чтобы присвоить результат переменной слева.

Вот несколько примеров:

A = 4 * 6; // использование строчного комментария и точки с запятой, a равно 24 a = a + 5; // равно сумме исходного значения и пяти a == 5 // не присваивается пять, выполняется проверка, а равно 5 или нет

Вы часто будете использовать == в таких конструкциях, как условные операторы и циклы.

A < 5 // Проверка, a менее пяти? a > 5 // Проверка, a больше пяти? a == 5 // Проверка, a равно пяти? a != 5 // Проверка, а неравно пяти? a >= 5 // Проверка, a больше или равно пяти? a <= 5 // Проверка, a меньше или равно пяти?

Данные примеры не очень наглядно показывают использование знаков сравнения, но когда мы начнём изучать операторы выбора , вы поймете, зачем это надо.

Теги: Функции в си, прототип, описание, определение, вызов. Формальные параметры и фактические параметры. Аргументы функции, передача по значению, передача по указателю. Возврат значения.

Введение

Ч ем дальше мы изучаем си, тем больше становятся программы. Мы собираем все действия в одну функцию main и по несколько раз копируем одни и те же действия, создаём десятки переменных с уникальными именами. Наши программы распухают и становятся всё менее и менее понятными, ветвления становятся всё длиннее и ветвистее.

Но из сложившейся ситуации есть выход! Теперь мы научимся создавать функции на си. Функции, во-первых, помогут выделить в отдельные подпрограммы дублирующийся код, во-вторых, помогут логически разбить программу на части, в-третьих, с функциями в си связано много особенностей, которые позволят использовать новые подходы к структурированию приложений.

Функция – это именованная часть программы, которая может быть многократно вызвана из другого участка программы (в котором эта функция видна). Функция может принимать фиксированное либо переменное число аргументов, а может не иметь аргументов. Функция может как возвращать значение, так и быть пустой (void) и ничего не возвращать.

Мы уже знакомы с многими функциями и знаем, как их вызывать – это функции библиотек stdio, stdlib, string, conio и пр. Более того, main – это тоже функция. Она отличается от остальных только тем, что является точкой входа при запуске приложения.
Функция в си определяется в глобальном контексте. Синтаксис функции: (, ...) { }

Самый простой пример – функция, которая принимает число типа float и возвращает квадрат этого числа

#include #include float sqr(float x) { float tmp = x*x; return tmp; } void main() { printf("%.3f", sqr(9.3f)); getch(); }

Внутри функции sqr мы создали локальную переменную, которой присвоили значение аргумента. В качестве аргумента функции передали число 9,3. Служебное слово return возвращает значение переменной tmp. Можно переписать функцию следующим образом:

Float sqr(float x) { return x*x; }

В данном случае сначала будет выполнено умножение, а после этого возврат значения. В том случае, если функция ничего не возвращает, типом возвращаемого значения будет void. Например, функция, которая печатает квадрат числа:

Void printSqr(float x) { printf("%d", x*x); return; }

в данном случа return означает выход из функции. Если функция ничего не возвращает, то return можно не писать. Тогда функция доработает до конца и произойдёт возврат управления вызывающей функции.

Void printSqr(float x) { printf("%d", x*x); }

Если функция не принимает аргументов, то скобки оставляют пустыми. Можно также написать слово void:

Void printHelloWorld() { printf("Hello World"); }

эквивалентно

Void printHelloWorld(void) { printf("Hello World"); }

Формальные и фактические параметры

П ри объявлении функции указываются формальные параметры, которые потом используются внутри самой функции. При вызове функции мы используем фактические параметры. Фактическими параметрами могут быть переменные любого подходящего типа или константы.

Например, пусть есть функция, которая возвращает квадрат числа и функция, которая суммирует два числа.

#include #include //Формальные параметры имеют имена a и b //по ним мы обращаемся к переданным аргументам внутри функции int sum(int a, int b) { return a+b; } float square(float x) { return x*x; } void main() { //Фактические параметры могут иметь любое имя, в том числе и не иметь имени int one = 1; float two = 2.0; //Передаём переменные, вторая переменная приводится к нужному типу printf("%d\n", sum(one, two)); //Передаём числовые константы printf("%d\n", sum(10, 20)); //Передаём числовые константы неверного типа, они автоматически приводится к нужному printf("%d\n", sum(10, 20.f)); //Переменная целого типа приводится к типу с плавающей точкой printf("%.3f\n", square(one)); //В качестве аргумента может выступать и вызов функции, которая возвращает нужное значение printf("%.3f\n", square(sum(2 + 4, 3))); getch(); }

Обращаю внимание, что приведение типов просиходит неявно и только тогда, когда это возможно. Если функция получает число в качестве аргумента, то нельзя ей передать переменную строку, например "20" и т.д. Вообще, лучше всегда использовать верный тип или явно приводить тип к нужному.
Если функция возвращает значение, то оно не обязательно должно быть сохранено. Например, мы пользуемся функцией getch, которая считывает символ и возвращает его.

#include #include void main() { char c; do { //Сохраняем возвращённое значение в переменную c = getch(); printf("%c", c); } while(c != "q"); //Возвращённое значение не сохраняется getch(); }

Передача аргументов

При передаче аргументов происходит их копирование. Это значит, что любые изменения, которые функция производит над переменными, имеют место быть только внутри функции. Например

#include #include void change(int a) { a = 100; printf("%d\n", a); } void main() { int d = 200; printf("%d\n", d); change(d); printf("%d", d); getch(); }

Программы выведет
200
100
200
Понятно почему. Внутри функции мы работаем с переменной x, которая является копией переменной d. Мы изменяем локальную копию, но сама переменная d при этом не меняется. После выхода из функции локальная переменная будет уничтожена. Переменная d при этом никак не изменится.
Каким образом тогда можно изменить переменную? Для этого нужно передать адрес этой переменной. Перепишем функцию, чтобы она принимала указатель типа int

#include #include void change(int *a) { *a = 100; printf("%d\n", *a); } void main() { int d = 200; printf("%d\n", d); change(&d); printf("%d", d); getch(); }

Вот теперь программа выводит
200
100
100
Здесь также была создана локальная переменная, но так как передан был адрес, то мы изменили значение переменной d, используя её адрес в оперативной памяти.

В программировании первый способ передачи параметров называют передачей по значению, второй – передачей по указателю. Запомните простое правило: если вы хотите изменить переменную, необходимо передавать функции указатель на эту переменную. Следовательно, чтобы изменить указатель, необходимо передавать указатель на указатель и т.д. Например, напишем функцию, которая будет принимать размер массива типа int и создавать его. С первого взгляда, функция должна выглядеть как-то так:

#include #include #include void init(int *a, unsigned size) { a = (int*) malloc(size * sizeof(int)); } void main() { int *a = NULL; init(a, 100); if (a == NULL) { printf("ERROR"); } else { printf("OKAY..."); free(a); } getch(); }

Но эта функция выведет ERROR. Мы передали адрес переменной. Внутри функции init была создана локальная переменная a, которая хранит адрес массива. После выхода из функции эта локальная переменная была уничтожена. Кроме того, что мы не смогли добиться нужного результата, у нас обнаружилась утечка памяти: была выделена память на куче, но уже не существует переменной, которая бы хранила адрес этого участка.

Для изменения объекта необходимо передавать указатель на него, в данном случае – указатель на указатель.

#include #include #include void init(int **a, unsigned size) { *a = (int*) malloc(size * sizeof(int)); } void main() { int *a = NULL; init(&a, 100); if (a == NULL) { printf("ERROR"); } else { printf("OKAY..."); free(a); } getch(); }

Вот теперь всё работает как надо.
Ещё подобный пример. Напишем функцию, которая принимает в качестве аргумента строку и возвращает указатель на область памяти, в которую скопирована эта строка.

#include #include #include #include char* initByString(const char *str) { char *p = (char*) malloc(strlen(str) + 1); strcpy(p, str); return p; } void main() { char *test = initByString("Hello World!"); printf("%s", test); free(test); getch(); }

В этом примере утечки памяти не происходит. Мы выделили память с помощью функции malloc, скопировали туда строку, а после этого вернули указатель. Локальные переменные были удалены, но переменная test хранит адрес участка памяти на куче, поэтому можно его удалить с помощью функции free.

Объявление функции и определение функции. Создание собственной библиотеки

В си можно объявить функцию до её определения. Объявление функции, её прототип, состоит из возвращаемого значения, имени функции и типа аргументов. Имена аргументов можно не писать. Например

#include #include //Прототипы функций. Имена аргументов можно не писать int odd(int); int even(int); void main() { printf("if %d odd? %d\n", 11, odd(11)); printf("if %d odd? %d\n", 10, odd(10)); getch(); } //Определение функций int even(int a) { if (a) { odd(--a); } else { return 1; } } int odd(int a) { if (a) { even(--a); } else { return 0; } }

Это смешанная рекурсия – функция odd возвращает 1, если число нечётное и 0, если чётное.

Обычно объявление функции помещают отдельно, в.h файл, а определение функций в.c файл. Таким образом, заголовочный файл представляет собой интерфейс библиотеки и показывает, как с ней работать, не вдаваясь в содержимое кода.

Давайте создадим простую библиотеку. Для этого нужно будет создать два файла – один с расширением.h и поместить туда прототипы функций, а другой с расширением.c и поместить туда определения этих функций. Если вы работаете с IDE, то.h файл необходимо создавать в папке Заголовочные файлы, а файлы кода в папке Файлы исходного кода. Пусть файлы называются File1.h и File1.c
Перепишем предыдущий код. Вот так будет выглядеть заголовочный файл File1.h

#ifndef _FILE1_H_ #define _FILE1_H_ int odd(int); int even(int); #endif

Содержимое файла исходного кода File1.c

#include "File1.h" int even(int a) { if (a) { odd(--a); } else { return 1; } } int odd(int a) { if (a) { even(--a); } else { return 0; } }

Наша функция main

#include #include #include "File1.h" void main() { printf("if %d odd? %d\n", 11, odd(11)); printf("if %d odd? %d\n", 10, odd(10)); getch(); }

Рассмотрим особенности каждого файла. Наш файл, который содержит функцию main, подключает необходимые ему библиотеки а также заголовочный файл File1.h. Теперь компилятору известны прототипы функций, то есть он знает возвращаемый тип, количество и тип аргументов и имена функций.

Заголовочный файл, как и оговаривалось ранее, содержит прототип функций. Также здесь могут быть подключены используемые библиотеки. Макрозащита #define _FILE1_H_ и т.д. используется для предотвращения повторного копирования кода библиотеки при компиляции. Эти строчки можно заменить одной

#pragma once int odd(int); int even(int);

Файл File1.c исходного кода подключает свой заголовочный файл. Всё как обычно логично и просто. В заголовочные файлах принято кроме прототипов функций выносить константы, макроподстановки и определять новые типы данных. Кроме того, именно в заголовочных файлах можно обширно комментировать код и писать примеры его использования.

Передача массива в качестве аргумента

К ак уже говорилось ранее, имя массива подменяется на указатель, поэтому передача одномерного массива эквивалентна передаче указателя. Пример: функция получает массив и его размер и выводит на печать:

#include #include void printArray(int *arr, unsigned size) { unsigned i; for (i = 0; i < size; i++) { printf("%d ", arr[i]); } } void main() { int x = {1, 2, 3, 4, 5}; printArray(x, 10); getch(); }

В этом примере функция может иметь следующий вид

Void printArray(int arr, unsigned size) { unsigned i; for (i = 0; i < size; i++) { printf("%d ", arr[i]); } }

Также напомню, что правило подмены массива на указатель не рекурсивное. Это значит, что необходимо указывать размерность двумерного массива при передаче

#include #include void printArray(int arr, unsigned size) { unsigned i, j; for (i = 0; i < size; i++) { for (j = 0; j < 5; j++) { printf("%d ", arr[i][j]); } printf("\n"); } } void main() { int x = { { 1, 2, 3, 4, 5}, { 6, 7, 8, 9, 10}}; printArray(x, 2); getch(); }

Либо, можно писать

#include #include void printArray(int (*arr), unsigned size) { unsigned i, j; for (i = 0; i < size; i++) { for (j = 0; j < 5; j++) { printf("%d ", arr[i][j]); } printf("\n"); } } void main() { int x = { { 1, 2, 3, 4, 5}, { 6, 7, 8, 9, 10}}; printArray(x, 2); getch(); }

Если двумерный массив создан динамически, то можно передавать указатель на указатель. Например функция, которая получает массив слов и возвращает массив целых, равных длине каждого слова:

#include #include #include #include #define SIZE 10 unsigned* getLengths(const char **words, unsigned size) { unsigned *lengths = NULL; unsigned i; lengths = (unsigned*) malloc(size * sizeof(unsigned)); for (i = 0; i < size; i++) { lengths[i] = strlen(words[i]); } return lengths; } void main() { char **words = NULL; char buffer; unsigned i; unsigned *len = NULL; words = (char**) malloc(SIZE * sizeof(char*)); for (i = 0; i < SIZE; i++) { printf("%d. ", i); scanf("%127s", buffer); words[i] = (char*) malloc(128); strcpy(words[i], buffer); } len = getLengths(words, SIZE); for (i = 0; i < SIZE; i++) { printf("%d ", len[i]); free(words[i]); } free(words); free(len); getch(); }

Можно вместо того, чтобы возвращать указатель на массив, передавать массив, который необходимо заполнить

#include #include #include #include #define SIZE 10 void getLengths(const char **words, unsigned size, unsigned *out) { unsigned i; for (i = 0; i < size; i++) { out[i] = strlen(words[i]); } } void main() { char **words = NULL; char buffer; unsigned i; unsigned *len = NULL; words = (char**) malloc(SIZE * sizeof(char*)); for (i = 0; i < SIZE; i++) { printf("%d. ", i); scanf("%127s", buffer); words[i] = (char*) malloc(128); strcpy(words[i], buffer); } len = (unsigned*) malloc(SIZE * sizeof(unsigned)); getLengths(words, SIZE, len); for (i = 0; i < SIZE; i++) { printf("%d ", len[i]); free(words[i]); } free(words); free(len); getch(); }

На этом первое знакомство с функциями заканчивается: тема очень большая и разбита на несколько статей.

Страница 53 из 85

1.5.3. Передача параметров функции main

Функция main, с которой начинается выполнение программы на языке программирования С, может быть определена с параметрами, которые передаются из внешнего окружения, например, из командной строки. Во внешнем окружении действуют свои правила представления данных, а точнее, все данные представляются в виде строк символов. Для передачи этих строк в функцию main используются два параметра, первый параметр служит для передачи числа передаваемых строк, второй для передачи самих строк. Общепринятые (но не обязательные) имена этих параметров argc и argv. Параметр argc имеет тип int, его значение формируется из анализа командной строки и равно количеству слов в командной строке, включая и имя вызываемой программы (под словом понимается любой текст не содержащий символа пробел). Параметр argv это массив указателей на строки, каждая из которых содержит одно слово из командной строки. Если слово должно содержать символ пробел, то при записи его в командную строку оно должно быть заключено в кавычки.

Функция main может иметь и третий параметр, который принято называть argp, и который служит для передачи в функцию main параметров операционной системы (среды) в которой выполняется программа на языке программирования С.

Заголовок функции main имеет вид:

Если, например, командная строка программы на языке программирования С имеет вид:

A:\>cprog working "C program" 1

то аргументы argc, argv, argp представляются в памяти как показано в схеме на рис.1.

Argc [ 4 ]
argv --> -->
-->
-->
-->
argp --> -->
-->
-->
-->
Рис.1. Схема размещения параметров командной строки

Операционная система поддерживает передачу значений для параметров argc, argv, argp, а на пользователе лежит ответственность за передачу и использование фактических аргументов функции main.

Следующий пример представляет программу печати фактических аргументов, передаваемых в функцию main из операционной системы и параметров операционной системы.

Пример:
int main (int argc, char *argv, char *argp)
{ int i=0;
printf ("\n Имя программы %s", argv);
for (i=1; i>=argc; i++)
printf ("\n аргумент %d равен %s", argv[i]);
printf ("\n Параметры операционной системы:");
while (*argp)
{ printf ("\n %s",*argp);
argp++;
}
return (0);
}

Доступ к параметрам операционной системы можно также получить при помощи библиотечной функции geteuv, ее прототип имеет следующий вид:

char *geteuv (const char *varname);

Аргумент этой функции задает имя параметра среды, указатель на значение которой выдаст функция geteuv. Если указанный параметр не определен в среде в данный момент, то возвращаемое значение NULL.

Используя указатель, полученный функцией geteuv, можно только прочитать значение параметра операционной системы, но нельзя его изменить. Для изменения значения параметра системы предназначена функция puteuv.

Компилятор языка программирования С строит С-программу таким образом, что вначале работы программы выполняется некоторая инициализация, включающая, кроме всего прочего, обработку аргументов, передаваемых функции main, и передачу ей значений параметров среды. Эти действия выполняются библиотечными функциями _setargv и _seteuv, которые всегда помещаются компилятором перед функцией main.

Если программа на языке программирования С не использует передачу аргументов и значений параметров операционной системы, то целесообразно запретить использование библиотечных функций _setargv и _seteuv поместив в языке программирования С-программу перед функцией main функции с такими же именами, но не выполняющие никаких действий (заглушки). Начало программы в этом случае будет иметь вид:

Setargv()
}
-seteuv()
{ return ; /* пустая функция */
}
int main()
{ /* главная функция без аргументов */
...
...
renurn (0);
}

В приведенной программе при вызове библиотечных функций _setargv и _seteuv будут использованы функции помещенные в программу пользователем и не выполняющие никаких действий. Это заметно снизит размер получаемого exe-файла.

Минимальной программой на C++ является

Int main() { } // the minimal C++ program

В этой программе представлено объявление функции main, которая не принимает никаких аргументов. Фигурные скобки отражают группировку в C++ и в данном случае показывают тело функции main. То есть начало функции main - открывающая скобка, и конец функции main - закрывающая скобка. Двойной слэш показывает начало комментария. Комментарии игнорируются компилятором и служат для уточнения информации в коде.

Каждая программа, написанная на C++, имеет в себе функцию main() , с которой начинается запуск программы. Функция main(), как правило, возвращает результат своего выполнения, о чем сигнализирует int (integer - целочисленный), который написан перед функцией main() . При правильном, успешном завершении функция main() возвращает в качестве результата 0 . Значение результата, отличное от нуля сигнализирует о нештатном завершении программы.

Возвращаемое программой значение по завершению может использоваться в операционной системе для служебных целей.

Типичным примером первой программы на любом языке программирования является вывод текста "Hello, World!":

#include int main() { std::cout << "Hello, World!\n"; }

Но так ли всё просто в данной программе? В целом, уже одна эта маленькая программа несёт в себе очень большой пласт информации, который необходимо понимать для разработки на C++.

  1. Директива #include
    #include
    сообщает компилятору о том, что необходимо подключить некий заголовочный файл, компоненты которого планируется использовать в файле, где объявлена функция main() . iostream - это стандартная библиотека ввода вывода из STL. То есть здесь уже используется функционал библиотек, хоть и являющихся для языка стандартом. И последний момент - это угловые скобки, в которых находится название библиотеки, которые говорят о том, что это включение внешних файлов в проект, а не тех которые находятся в составе проекта. Те же файлы, которые находятся в составе проекта подключаются обрамляясь в обычные кавычки, например #include "myclass.h". Такое подключение библиотек является стандартом. Например, в Visual Studio при несоблюдении данного стандарта будут выпадать ошибки.
  2. std - это использование пространства имён, в котором находится оператор вывода cout. Пространства имён были введены в C++ для того, чтобы убрать конфликты имён между библиотеками и проектом разработчика, если где-то имеются повторяющиеся наименования функций или классов. В Java для разрешения конфликтов имён используется система пакетов.

    cout - это оператор вывода, у которого перегружен оператор << , чтобы не использовать отдельную функцию для вывода текста в консоль.

Это помимо того, что запись функции main может иметь различный вид, хотя стандартом являются две записи:

  1. int main()
  2. int main(int argc, char* argv)

Можно встретить ещё записи типа void main() и т.д. Но это ошибочные записи, хотя в некоторых компиляторах они будут компилироваться, причём даже без ошибок и предупреждений.

В записи int main(int argc, char* argv) передаются аргументы:

  1. argc - указывает количество переданных аргументов. Всегда не меньше 1, поскольку всегда передаётся имя программы
  2. argv - массив указателей на аргументы, которые передаются в качестве строковых переменных.

Если argc больше 1, значит при запуске программы были переданы дополнительные аргументы.

Проверка может выглядеть следующим образом:

#include int main(int argc, char* argv) { // Если бы передан дополнительный аргумент, if (argc > 1) { // то попытаемся вывести полученный аргумент std::cout << argv<

В целом, есть большое количество моментов, которые необходимо понимать в C++ даже для небольшой программы, но от этого только интереснее;-)