Как определить параметры динамика. Измерение параметров Тиля-Смолла в домашних условиях. Нахождение V as методом добавочной массы

Хочется собрать сабвуфер , да не простой, а грамотно рассчитанный. В этих расчетах уже все поднаторели: и установщики, и любители, и программ тоже вроде хватает, например JBL SpeakerShop . Одно только «но» - без параметров Тиля-Смолла далеко не уедешь.

К сожалению, недорогие и тем особенно интересные динамики часто попадают в руки вообще без каких-либо цифр. Бывает и так, что характеристики вроде есть, но разные, в зависимости от года выпуска. Это встречается даже у известных производителей.
В общем, умение измерять эти величины лишним не будет. Традиционные методы измерения описаны во многих источниках и секрета не представляют. Более того, в упомянутой выше программе JBL SpeakerShop есть удобный «мастер», который избавляет от необходимости вручную рассчитывать промежуточные и окончательные значения напряжений, частот и добротностей: нужно собрать приведенную там схему и действовать в соответствии с указаниями программы.

Я сам неоднократно пользовался этой методикой, все здорово, только для измерений требуются:
а) генератор,
б) частотомер,
в) вольтметр переменного тока,
г) усилитель низкой частоты.

Думаю, что где-нибудь к пункту в) из этого списка исследовательский пыл у многих уже малость поугас. Но это еще не все. Сам процесс измерений, постоянная «ловля» требуемых значений частот и напряжений способны утомить даже флегматика: на один динамик уходит в лучшем случае полчаса. Обидно тратить время на такую рутину, поэтому, когда я наткнулся на программу SpeakerWorkShop , радости не было предела.

Замечательно, нужны только компьютер со звуковой платой и элементарные кабели. Первые несколько дней я честно пытался делать все так, как велит инструкция. Тут меня ждало разочарование. То есть сама по себе программа хорошая, но вот ее help - это что-то. Прочитал его, наверное, раз двадцать, пробовал и так, и этак, но так ничего и не получилось. Что поделать - бесплатный софт сродни сыру той же цены.

Несколько месяцев я продолжал измерять «три цифры» обычными способами, пока на сайте, на котором находится сама программа, не появилась новая ссылка. Спасибо чемпиону РАСКА среди любителей Косте Никифорову за то, что сказал о ней. Предлагаемое ниже описание - мой собственный, упрощенный вариант приставки и краткая инструкция по работе с программой.

Бывает в жизни - как приклеится к человеку прозвище, так и преследует до конца дней его. Вот и с прибором, который буду ниже описывать, тоже такое случилось - «коробочка », да и все тут. Как я ни пытался выдумать более наукообразное название, ничего не вышло. Схема приведена на рис. 1

Некоторые комментарии по поводу применяемых элементов.
X1 - разъем, подключаемый к выходу усилителя мощности (Spkr Out) звуковой карты, обычно «мини-джек». Сигнал правого и левого канала с усилителя одинаков, поэтому можно использовать любой контакт разъема. При использовании внешнего усилителя подключать одновременно этот разъем к выходу звуковой платы НЕЛЬЗЯ!

X2, X3 понадобятся, если вы будете использовать внешний усилитель мощности. Это более предпочтительный вариант, правда, чуть более громоздкий. Подойдут «колоночные» клеммы, желательно винтовые. Кроме того, в случае использования внешнего усилителя потребуется дополнительный кабель «мини-джек - два тюльпана».

X4, X5 - клеммы, аналогичные X2, X3. К ним будет присоединяться объект исследования. Очень полезно продублировать эти клеммы парой «крокодилов».

X6 - «мини-джек», который будет подключен ко входу Line-In звуковой платы. Распайку правого и левого канала я не привожу - пока соедините как получится, уточним позднее. Провод к разъему нужно брать экранированный.

R1, R2 - резисторы, используемые в качестве эталонных при калибровке программы. Номиналы особой роли не играют и могут быть от 7,5 до 12 Ом, например типа МЛТ-2.
R3 - это резистор, с величиной которого программа «сравнивает» неизвестный импеданс. Поэтому номинал этого резистора должен быть соизмерим с исследуемым. Если в основном предполагается измерять автомобильные динамики, величину R3 можно взять около 4 Ом. Мощность можно выбрать такую же, как для R1.

R4, R5, R6, R7 - любой мощности. Сопротивления могут несколько отличаться от указанных, важно лишь, чтобы R4/R6 = R5/R7 = 10...15. Это делитель, который ослабляет сигнал на входе звуковой карты.

SA1 служит для выбора между двумя эталонными сопротивлениями. Он используется только при калибровке. Можно использовать тумблер, я поставил П2К, соединив параллельно несколько секций.

SA2, пожалуй, самый ответственный. Важно, чтобы он обеспечивал надежный и стабильный контакт, от этого во многом зависит точность результатов.

Итак, «коробочка » собрана. Теперь потребуется омметр, причем максимально возможной точности, желательно измерительный мост. Необходимо установить переключатели во все положения согласно таблице и измерить указанные сопротивления.

положение
переключателя
положение
переключателя
сопротивление сопротивление
SA1 SA2 X4-X5 X2-X4
CAL1 Верхнее Нижнее 10 4
CAL2 Нижнее Нижнее 5 4
LOOP Любое Верхнее Бесконечность 0
IMP Любое Среднее Бесконечность 4

Обращаю внимание на то, что при работе потребуются именно реально измеренные значения сопротивлений. Их, а также назначение всех переключателей и входов-выходов лучше всего написать прямо на корпусе - на память надеяться не советую.

Принцип работы системы очень прост. Шумовой сигнал, формируемый программой, подается через усилитель на исследуемый объект через резистор R3 известного сопротивления. Программа сравнивает напряжение на одном канале (верхний вывод R3) с напряжением на другом (нижний вывод R3 и верхний - измеряемого объекта). Гениальная простота идеи состоит в том, что для расчета неизвестного импеданса используются не абсолютные величины напряжений, а их отношение. Благодаря предварительной калибровке по заведомо известным сопротивлениям (R2 и R2-R1) достигается вполне приемлемая точность измерений.

Теперь можно присоединить «коробочку» к звуковой плате. Для первого раза не стоит использовать внешний усилитель: чтобы понять принцип работы, он особо не нужен. А когда принцип станет ясен, его подключение вопросов уже не вызовет.

Настройка программы
Возможно, кому-то описание настройки покажется излишне подробным, но, как показывает практика, удобно, когда весь процесс описан по порядку, а не по принципу «это вы и так знаете, здесь все очевидно, в общем, умные - сами разберетесь».

После первого запуска программы нужно проверить, поддерживает ли ваша звуковая плата «полностью дуплексный режим», т. е. позволяет ли одновременно воспроизводить и записывать звук. Для проверки нужно выбрать пункт меню Options-Wizard-Check sound card. Дальнейшие действия программа проделает самостоятельно. Если результат отрицательный, придется искать другую плату или обновлять драйвер.

Если все в порядке, откройте Volume Control (Регулятор уровня). Выбрав Options-Properties, установите Mute на все регуляторы, кроме Volume Control и Wave. Необходимо отключить все «лишние» опции, вроде Enhanced Stereo и темброблока. Регулятор громкости установите в среднее положение. В завершение переместите окно Volume Control, как показано на рисунке 2.


рис. 2


рис. 3

Теперь откройте еще одну копию Volume Control. Выберите Options-Properties, установите режим записи (Recording). Имя окна изменится на Recording Control (Уровень). Аналогично вышеописанному поставьте Mute на все регуляторы, кроме Recording и Line-In. Регулятор уровня поставьте в положение максимума. Потом, возможно, уровень потребуется изменить, но об этом позже. Переместите окно Recording согласно рисунку.

Один из самых ответственных этапов настройки - правильно выбрать входные и выходные уровни сигналов. Для этого создайте новый сигнал, выбрав пункт Resource-New-Signal. Дайте ему какое-нибудь имя, например sign1. По умолчанию будет выбран синусоидальный тип сигнала (Sine), что нас вполне устраивает. Имя нового сигнала должно появиться в окне проекта (то, что слева).

Для того чтобы что-то сделать с сигналом или динамиком, его нужно обязательно открыть. Думаете, для этого достаточно двойного щелчка? Вот тут таится одна из особенностей интерфейса программы: для открытия ресурса требуется сначала щелкнуть на имени ресурса левой кнопкой мыши, затем либо выбрать пункт Open из меню, появляющегося при нажатии правой кнопки, либо нажать F2 на клавиатуре. Вновь нажмите правую кнопку и войдите в Properties. Там нужно выбрать закладку Sine и ввести значение частоты 500 Гц. Фаза сигнала - 0. OK.

Установите переключатели «коробочки» в положение LOOP (согласно таблице). Убедившись в том, что сигнал открыт, войдите в меню Sound-Record - появится диалог Record Data. Введите туда те значения, которые приведены на рис. 3. Нажмите OK; если к клеммам Test подключен динамик, раздастся кратковременный «шип».

Посмотрим на дерево проекта. Там появится несколько новых объектов с именами, начинающимися с sign1. Откройте ресурс с именем sing1.in.l. На появившемся справа графике нажмите правую кнопку мыши и выберите Chart properties. Выберите закладку X Axis и установите в разделе Scale максимальное значение, равное 10. Затем выберите Y Axis и установите диапазон значения Minimum и Maximum - 32 K и 32 K соответственно. Нажмите OK. График должен выглядеть как 4,5 периода синусоидальных колебаний. Проделайте все то же самое с ресурсом sing1.in.r.

Теперь нужно выяснить уровень выходного сигнала, при котором наступает ограничение. Для этого понемногу увеличивайте уровень регулятором громкости, повторяя каждый раз процедуру записи (пункт меню Sound-Record Again) и анализируя графики sign1.in.r и sign1.in.l. Как только появится видимое ограничение амплитуды (обычно при уровнях ~20 K), нужно немного уменьшить уровень сигнала. На этом процесс установки уровня можно считать законченным.

В оригинальной методике автор предлагает проверить теперь соответствие левого и правого каналов. Я это делал, но впоследствии оказалось, что их пришлось поменять местами. Так что лучше перейти сразу к калибровке программы по известным сопротивлениям - там «правый-левый» заодно и проверим.

Для начала убедитесь в том, что к тестовым клеммам (X4, X5) ничего не подключено. Затем откройте меню Option-Preferences и выберите там закладку Measurements. Установите Sample Rate в крайнее правое положение, а Sample Size - равным 8192. Громкость надо сделать равной 100. В дальнейшем при реальных измерениях для большей точности нужно устанавливать больший Sample Size. Правда, при этом возрастает размер файла. Точность можно повысить, уменьшив Sample Rate, - при этом снизится верхняя граничная частота измерений, но для сабвуферов это совершенно неважно.

Теперь надо проверить разбаланс каналов. Для этого выберите пункт Option - Calibrate-Channel Difference и нажмите кнопку Test. Дальнейшие действия подскажет программа. Результаты проверки будут находиться в разделе Measurement.Calib папки System (в окне проекта). Какие точно значения должны получаться, я не знаю, на практике разбаланс выходит порядка десятых долей (в безразмерных единицах), а уровень сигнала на выходе каждого из каналов при этом - в районе 20000 этих же единиц. Думаю, такое соотношение можно считать приемлемым.

Дальше - самое интересное. Мы будем измерять заведомо известные сопротивления. Войдите в пункт Options-Preferences и выберите закладку Impedance. В поле Reference resistor введите измеренную величину сопротивления между клеммами X2 и X4. В соседнее поле (Series resistor) можно ввести значение, например 0,2, программа потом сама подставит туда то, что сочтет нужным. Теперь нажмите кнопку Test. Установите переключатели «коробочки» в режим CAL1 и введите измеренное на клеммах значение эталонного сопротивления R2. (Вы его уже забыли? А я ведь советовал записать.) Нажимаем кнопку Next и повторяем то же самое, но в режиме CAL2. Кстати, советую при калибровке и измерениях постоянно следить за индикатором, который находится возле регулятора уровня. При появлении там «красных делений» я слегка уменьшаю уровень громкости. После этого нужно повторить калибровку. Поначалу процесс освоения длится долго, но через пару сеансов работы с программой все настройки нужно будет в основном контролировать. Это занимает всего несколько минут.

Итак, программа выдала, каковы, на ее взгляд, значения Reference и Series резисторов. Если отличия от введенных нами величин небольшие (например, 4,2 ома вместо 3,9) - все замечательно. Можно пройти для верности процесс еще разок и приступить к реальным измерениям. Если программа выдает явный бред (например, отрицательные значения) - значит, надо поменять местами правый и левый каналы в разъеме X6 и повторить настройку заново. После этого, как правило, все становится нормально, хотя у некоторых коллег наблюдалось устойчивое нежелание программы настраиваться. То ли звуковая карта какая-то не такая, то ли еще что - не знаю. О встретившихся сложностях и найденных путях их преодоления сообщайте, оформим в виде FAQ (чувствую - придется).

Вроде настроились. Можно начать пожинать плоды своего труда. Берем какой-нибудь конденсатор или катушку индуктивности, щелкаем тумблер в положение IMP, выбираем созданный ранее сигнал sign1, пункт меню Measure-Passive Component... Есть результат? Должен быть. Не знаю, кто как, а я испытываю какую-то первобытную радость, когда вижу, что программа сама распознала, что за компонент я подключил, и выдала его значение «в простой письменной форме».

Точность измерений пассивных компонентов, по скромным оценкам, составляет 10-15%. Для изготовления кроссоверов этого, на мой взгляд, вполне достаточно.

Теперь переходим к динамикам. Здесь все так же легко и просто. Создаем новый динамик (Resource-NewDriver), указываем ему имя, открываем (напоминаю, клавиша F2). Теперь изучаем меню Measure. В принципе программа (ее подсказка) советует получить импедансы динамика в свободном состоянии (Fre - Air), затем в закрытом ящике, ввести значение объема ящика в Properties этого динамика, а затем рассчитать параметры Тиэле - Смолла (для этого, открыв динамик, нужно войти в меню Driver Estimate Parameters). Тут, однако, я встретил еще один подводный камень, поскольку значение эквивалентного объема программа считать отказывается (остается значение по умолчанию, 1000 л). Не беда, из двух графиков импеданса берем значения резонансных частот Fs и Fc и считаем Vas вручную по известной формуле: V as =V b ((F c /F s) 2 -1). Кто-то уже, наверное, ворчит, дескать, вот еще, самому что-то считать приходится - советую вспомнить, сколько вычислений производится при полностью «ручном» методе определения параметров. Вообще-то я надеюсь, что в последующих версиях программы эта и другие досадные ошибки будут устранены.

Хочу надеяться, что описанный мной простой и недорогой инструмент облегчит труд творчески мыслящего установщика. Конечно, конкуренции «Брюль&Къеру» он не составит, но ведь и вложения требуются совсем небольшие.

Повторите - не пожалеете.
О. Леонов

Читательское голосование

Статью одобрил 21 читатель.

Для участия в голосовании зарегистрируйтесь и войдите на сайт с вашими логином и паролем.

Внимание! Приведенная ниже методики действенна только для измерения параметров динамиков с резонансными частотами ниже 100Гц, на более высоких частотах погрешность возрастает.
Для получения максимально достоверных результатов все измерения рекомендуется производить несколько раз (3-5раз), затем за результат принимается средне-арифметическое значение.

Перед измерением параметров динамик необходимо «размять». Дело в том, что у неработающего определенное время динамика или у нового динамика параметры будут отличаться, от тех которые мы измерим после того как динамик отыграет определенное время и будет регулярно работать. Поэтому смысл размятия динамика и заключается в получении достоверных параметров измерений. Бытует множество мнений как и сколько надо разминать: просто музыкой, синусоидальным сигналом (синусом) на частоте резонанса динамика Fs, синусом на 1000Гц, гонять синусом на разных частотах, белым и розовым шумом, использовать тестовые диски.

Как разминать решать Вам, - это дело Ваших возможностей и времени, но разминать обязательно нужно.

От себя посоветую разминать в течении суток в различных комбинациях выше пречисленных способов, начать стоит с синуса частоты собственного резонанса Fs (взятую из паспорта динамика) на максимальное количество времени, потом уже использовать остальные способы. Можно использовать тестовые диски, лучше те которые содержат как музыкальные так и технические треки, т.е. сгенерированные сигналы различной формы, частоты и мощности, причем начать лучше с технических треков. Желательно разминать динамик на 50-100% от номинальной мощности, всё зависит от ваших условий, ушей и нервов.

Самыми основными параметрами, по которым можно рассчитать и изготовить акустическое оформление (корпус, ящик) являются параметры Тиля-Смолла.

Измерение резонансной частоты Fs, добротности динамика Qts и ее составляющих электрической и механической добротности Qes, Qms.

Метод 1

Для проведения измерений этих параметров вам понадобится следующее оборудование:

* Вольтметр
*Генератор сигналов звуковой частоты
*Частотомер
* Мощный (не менее 2 ватт) резистор сопротивлением 1000 ом
*Точный (+- 1%) резистор сопротивлением 10 ом
* Провода, зажимы и прочая дребедень для соединения всего этого в единую схему.

Конечно, в этом списке возможны изменения. Например, большинство генераторов имеют собственную шкалу частоты и частотомер не является в таком случае необходимостью. Вместо генератора можно также использовать звуковую плату компьютера и соответствующее программное обеспечение (например, это), способное генерировать синусоидальные сигналы от 0 до 200Гц требуемой мощности. Либо мне еще приходилось делать так, когда не было рядом компьютера: я нарезал на диск треки с частотами от 20-120Гц, потом крутил его на DVD подключенный усилителю и затем уже подключал подвешенный динамик через сопротивление.

Калибровка.
Для начала необходимо откалибровать вольтметр. Для этого вместо динамика подсоединяется сопротивление 10 Ом и подбором напряжения, выдаваемого генератором, надо добиться напряжения 0,01 вольта. Если резистор другого номинала, то напряжение должно соответствовать 1/1000 номинала сопротивления в Омах. Например для калибровочного сопротивления 4 Ома напряжение должно быть 0,004 вольта.
Запомните! После калибровки регулировать выходное напряжение генератора (усилителя) НЕЛЬЗЯ до окончания всех измерений.

Определение Fs и Rmax .
Динамик при этом и всех последующих измерениях должен находиться в свободном пространстве, обычно его подвешивают (обычно на люстре) подальше от стен и различныз предметов. Резонансная частота динамика находится по пику его импеданса (Z-характеристике). Для ее нахождения плавно увеличивайте частоту генератора, начиная примерно с 20Гц, и смотрите на показания вольтметра. Та частота, на которой напряжение на вольтметре будет максимальным (дальнейшее изменение частоты будет приводить к падению напряжения) и будет являться частотой основного резонанса для этого динамика. Для динамиков диаметром больше 16см эта частота должна лежать ниже 100Гц. Не забудьте записать не только частоту, но и показания вольтметра. Умноженные на 1000, они дадут сопротивление динамика на резонансной частоте Rmax, необходимое для расчета других параметров.

Определение Qms, Qes и Qts.
Эти параметры определяются по следующим формулам.

Как видно, это последовательное нахождение дополнительных параметров Ro, Rx и измерение неизвестных нам ранее частот F1 и F2 . Это частоты, при которых сопротивление динамика равно Rx . Поскольку Rx всегда меньше Rmax , то и частот будет две - одна несколько меньше Fs , а другая несколько больше.

Определение сопротивление обмотки головки постоянному току Re.
Теперь, подсоединив вместо калибровочного сопротивления динамик и выставив на генераторе частоту, близкую к 0 герц, мы можем определить его сопротивление постоянному току Re . Им будет являться показание вольтметра, умноженное на 1000. Впрочем, Re можно замерить и непосредственно омметром.

Метод 2

Схема измерений такая же как и в первом методе, элементы то же такие же: резистор на 1кОм и - генератор – либо генератор звуковой частоты способный выдавать напряжение 10-20В, либо сочетание генератор-усилитель, удовлетворяющее тому же требованию. Размещаем динамик вдали от стен, потолка и пола (часто рекомендуют подвешивать). Подключаем вольтметр к точкам А и С (т.е. к выходу усилителя) , и устанавливаем напряжение равным 10-20 В на частоте 500-1000 Гц.
Подключаем вольтметр к точкам В и С (т.е. непосредственно к контактам динамика) и изменяя частоту генератора находим частоту, на которой показания вольтметра максимальны, (как показано на рисунке ниже). Это и есть частота собственного резонанса динамика Fs . Записываем Fs и Us -показания вольтметра.

Изменяя частоту вверх относительно Fs , находим частоты, на которых показания вольтметра постоянны и значительно меньше Us (при дальнейшем повышении частоты напряжение опять начнет увеличиваться, пропорционально увеличению импеданса динамика). Запишем это значение, Um .

График импеданса динамика в свободном пространстве и в закрытом ящике выглядит приблизительно так.

Вычисляем напряжение U12 по формуле:

Изменяя частоту, добиваемся показаний на вольтметре соответствующие напряжению U12 , находим частоты F1 и F2.

Вычисляем акустическую или механическую добротность по формуле:

Электрическую добротность:

И, на конец, полную добротность:

Метод 3 - Измерения параметров тиля-смолла при помощи фазоинвертора

Схема измерений такая же как и в первом методе, элементы то же такие же: калибровочного резистора Rk номиналом 10 Ом и активное сопротивление R, задающее ток в цепи, номиналом 1кОм. Можно взять сопротивления Rk и R других номиналов, выполняя условия:

Rk - может быть любым, но близким к Re

R/Re > 200

Где Re - сопротивления постоянному току звуковой катушки.
Измерения начинаются с наиболее точного определения сопротивления постоянному току звуковой катушки Re и калибровочного резистора Rk при помощи цифрового вольтметра или мультиметра.
Затем вместо динамика включаем калибровочный резистор Rk и измеряем напряжение Uk на нем. Напряжение, соответствующее сопротивлению звуковой катушки постоянному току, находим по формуле:

Где: Sd - эффективная излучающая поверхность диффузора, м2; Cms - относительная жесткость.

Излучающая поверхность диффузора для самых низких частот (в зоне поршневого действия) она совпадает с конструктивной и равна: Радиусом R в данном случае будет являться половина расстояния от середины ширины резинового подвеса одной стороны до середины резинового подвеса противоположной. Это связано с тем, что половина ширины резинового подвеса также является излучающей поверхностью. Обратите внимание что единица измерения этой площади - квадратные метры. Соответственно и радиус нужно в нее подставлять в метрах.

Рассчитываем относительную жесткость Cms на основе полученных результатов по формуле:

М/Н (метров/Ньютон), где М - масса добавленных грузиков в килограммах.

Определение эквивалентного объема методом добавочного объема

Для определения эквивалентного объема динамика методом добавочного объема герметичный измерительный ящик с круглой дыркой совпадающей по размеру с диаметром диффузора динамика. Объем ящика лучше выбрать ближе к тому, в котором мы потом собираемся этот динамик слушать. Нужно герметично закрепить динамик в измерительном ящике. Лучше всего это сделать магнитом наружу, поскольку динамику все равно, с какой стороны у него объем, а вам будет проще подключать провода. Да и лишних отверстий при этом меньше. герметизируем все щели.

Затем нужно произвести измерения (резонансной частоты динамика в закрытом ящике) и, соответственно, вычислить механическую и электрическую добротность Qmc и Qec и добротность динамика в измерительном ящике Qts" (Qtс) . После чего уже вычисляем эквивалентный объем по формуле:

Практически с теми же результатами можно использовать и более простую формулу:

Где: Vb - объем измерительного ящика, м3.

Выполняем проверку: вычисляем и если измеренная в ящике Qts’=Qtc , ну или почти равна, значит - все сделано правильно, и можно переходить к проектированию акустической системы.

Выводы

Итак, мы нашли и рассчитали несколько основных параметров и можем на их основании делать некоторые выводы:

*1. Если резонансная частота динамика выше 50Гц, то он имеет право претендовать на работу в лучшем случае как мидбас. О сабвуфере на таком динамике можно сразу забыть.
*2. Если резонансная частота динамика выше 100Гц, то это вообще не низкочастотник. Можете использовать его для воспроизведения средних частот в трехполосных системах.
*3. Если соотношение Fs/Qts у динамика составляет менее 50-ти, то этот динамик предназначен для работы исключительно в закрытых ящиках. Если больше 100 - исключительно для работы с фазоинвертором или в бандпассах. Если же значение находится в промежутке между 50 и 100, то тут нужно внимательно смотреть и на другие параметры - к какому типу акустического оформления динамик тяготеет.

Лучше всего для этого использовать специальные компьютерные программы, способные смоделировать в графическом виде акустическую отдачу такого динамика в разном акустическом оформлении. Правда при этом не обойтись без других, не менее важных параметров - Sd, Cms и .
Полученных в результате всех этих измерений данных достаточно для дальнейшего расчета акустического оформления низкочастотного звена достаточно высокого класса.

Всем привет! Сегодня я постараюсь рассказать об основных параметрах автомобильных сабвуферов. Для чего же они могут понадобиться? А нужны они для того, чтобы правильно собрать короб для вашего динамика. Если не провести расчеты будущей коробки, сабвуфер будет гудеть, не будет громкого и глубокого баса. Вообще, сабвуфер - это независимая акустическая система, играющая низкие частоты от 20 ГЦ до 80 ГЦ. Можно с уверенностью сказать, что без сабвуфера никогда не получить качественного баса в автомобиле. Колонки конечно пытаются заменить НЧ динамик, но получается мягко говоря, слабо. Сабвуфер же, может помочь разгрузить колонки, взяв на себя низкочастотный диапазон, а фронтальной и тыловой акустике останется лишь играть средние и высокие частоты. Благодаря этому можно избавиться от искажений в звуке, и получить более гармоничное звучание музыки.

Теперь обсудим основные параметры низкочастотного динамика. Их понимание очень пригодится при постройке короба сабвуфера. Минимальный набор данных выглядит так: FS (резонансная частота динамика), VAS (эквивалентный объем) и QTS (полная добротность). Если неизвестно значение хотя бы одного параметра, лучше отказаться от этого динамика, т.к. рассчитать объем короба не получится.

Резонансная частота (Fs)

Резонансная частота - это частота резонанса НЧ головки без оформления, т.е. без полки, короба… Измеряется она следующим образом: динамик подвешивается в воздухе, как можно дальше от окружающих предметов. Так его резонанс будет зависеть только от него самого, т.е. от массы его подвижной системы и жесткости подвеса. Есть мнение, что низкая резонансная частота позволяет сделать отличный сабвуфер. Это не совсем верно, для определенных конструкций слишком низкая частота резонанса будет только помехой. Для справки: низкая частота резонанса, это 20-25 ГЦ. Редко встретишь динамик, у которого резонансная частота ниже 20 ГЦ. Ну а выше 40 ГЦ, будет слишком высоко для сабвуфера.

Полная добротность (Qts)

В данном случае означает не качество изделия, а соотношение вязких и упругих сил, существующих в подвижной системе НЧ головки около частоты резонанса. Подвижная система динамика очень похожа на подвеску автомобиля, в которой есть амортизатор и пружина. Пружина создает упругие силы, то есть собирает и отдает энергию в процессе движения. В свою очередь амортизатор, является источником вязкого сопротивления, он не накапливает ничего, а лишь поглощает и рассеивает в виде тепла. Аналогичный процесс происходит при колебании диффузора и всего, что к нему крепится. Чем выше значение добротности, тем сильнее преобладают упругие силы. Это примерно как машина без амортизаторов. Наедешь на небольшую кочку, и колеса запрыгает на одной пружине. Если говорить о динамике, это означает выброс с частотной характеристики на частоте резонанса, тем больший, чем больше полная добротность системы. Наивысшая добротность измеряется тысячами, и только у колокола. Он звучит исключительно на резонансной частоте. Распространенный способ проверки подвески автомобиля покачиванием из стороны в сторону, является кустарным способом измерения добротности подвески. Амортизатор губит энергию, которая появилась при сжатии пружины, т.е. она не вся вернется обратно. Количество загубленной энергии и есть добротность системы. Вроде бы с пружиной все ясно - её роль выполняет подвеска диффузора. Но где же амортизатор? А их тут целых два, причем работают они параллельно. Полная добротность состоит из двух: электрической и механической.

Механическая добротность обычно определяется выбором материала подвеса, в основном - центрирующей шайбы. Как правило, потери тут минимальны, и полная добротность состоит из механической лишь на 10-15%.

Большую часть составляет электрическая добротность. Самый жесткий амортизатор, имеющийся в двигательной системе динамика, это тандем магнита и звуковой катушки. Являясь по сути электромотором, он работает как генератор вблизи частоты резонанса, когда скорость и амплитуда движения звуковой катушки максимальны. Передвигаясь в магнитном поле, катушка вырабатывает ток, а нагрузкой генератора является выходное сопротивление усилителя, т.е. ноль. В итоге получается такой же электрический тормоз, как на электричках. Там примерно также тяговые двигатели заставляют работать в режиме генераторов, а батареи тормозных сопротивлений на крыше являются нагрузкой. Величина вырабатываемого тока будет зависеть от магнитного поля. Чем сильнее магнитное поле, тем больше будет величина тока. В итоге получается, что чем мощнее магнит динамика, тем ниже его добротность. Но, т.к. при вычислении этой величины нужно принять во внимание и длину провода обмотки, и ширину зазора в магнитной системе, окончательный вывод делать на основании размера магнита будет не правильно.

Для справки: низкая добротность динамика будет меньше 0,3, а высокая больше 0,5.

Эквивалентный объем (Vas)

Большая часть современных динамиков основана на принципе «акустического подвеса». Смысл в том, что нужно подобрать такой объем воздуха, при котором его упругость будет соответствовать упругости подвеса громкоговорителя. То есть, добавляется еще одна пружина в подвеску динамика. Если новая пружина будет равна по упругости старой, такой объем и будет эквивалентным. Его величина определяется диаметром динамика и жесткостью подвеса.

Чем мягче будет подвес, тем больше будет величина воздушной подушки, присутствие которой начнет колебать головку. Тоже самое происходит при изменении диаметра диффузора. Большой диффузор, при одинаковом смещении, будет сильнее сжимать воздух в ящике, и тем самым будет испытывать большую отдачу. Именно на это стоит обращать внимание при выборе динамика, ведь объем короба зависит от этого. Чем больше диффузор, тем выше будет отдача сабвуфера, но и размеры короба будут внушительными. Эквивалентный объем сильно связан с резонансной частотой, не зная которых можно допустить ошибку. Резонансная частота определяется массой подвижной системы и жесткостью подвеса, а эквивалентный объем, той же жесткостью подвеса и диаметром диффузора. Может получиться так: есть два НЧ динамика одного размера и с одинаковой частотой резонанса, но у одного из них - частота резонанса зависит от тяжелого диффузора и жесткой подвески, а у второго - от легкого диффузора и мягкого подвеса. Эквивалентный объем, в этом случае, может очень существенно отличаться, и при установке в один и тот же короб, результаты будут сильно разница.

Надеюсь, я немного помог разобраться с основными параметрами НЧ динамиков.

- Как! У тебя есть бабушка, которая угадывает три карты сряду, а ты до сих пор не перенял у ней ее кабалистики?
А.С. Пушкин, «Пиковая дама»

Сегодня речь пойдёт о том, что важно знать об акустике на самом деле. А именно - о знаменитых параметрах Тиля - Смолла, знание которых - залог выигрыша в азартной игре в автозвук. Без шельмовства и кабалистики.

Один выдающийся математик, по преданию, читая студентам лекции, говорил: «А сейчас мы приступим к доказательству теоремы, имя которой я имею честь носить». Кому выпала честь носить имена параметров Тиля и Смолла? Вспомним и это. Первым в связке идёт Альберт Невил Тиль (в оригинале A. Neville Thiele, «А» почти никогда не расшифровывается). И по возрасту, и по библиографии. Тилю сейчас 84 года, а когда ему было 40, он опубликовал историческую работу, в которой впервые было предложено проводить расчёты характеристик громкоговорителей на основе единого набора параметров, причём удобным и воспроизводимым образом.

Там, в работе 1961 года, было, в частности, сказано: «Характеристики громкоговорителя в области низких частот могут быть адекватно описаны с помощью трёх параметров: резонансной частоты, объёма воздуха, эквивалентного акустической гибкости громкоговорителя, и отношения электрического сопротивления к сопротивлению движению на резонансной частоте. По этим же параметрам определяется и электроакустическая эффективность. Я обращаюсь к производителям громкоговорителей с просьбой публиковать эти параметры как часть основных сведений об их изделиях».

Просьба Невилла Тиля была услышана индустрией только через десятилетие, в это время Тиль уже работал вместе с Рихардом Смоллом, уроженцем Калифорнии. По-калифорнийски пишется Richard Small, но почему-то уважаемый доктор предпочитает немецкий вариант произношения собственного имени. Смоллу в этом году исполняется 70, между прочим - юбилей поважнее многих. В начале семидесятых Тиль и Смолл окончательно довели до ума предложенный ими подход к расчёту громкоговорителей.

Сейчас Невилл Тиль - почётный профессор одного из университетов у себя на родине, в Австралии, а последняя профессиональная позиция Д-ра Смолла, за которой нам удалось уследить - главный инженер департамента автомобильной аудиотехники Harman-Becker. Ну и, само собой, оба - в составе руководства международного общества инженеров-акустиков (Audio Engineering Society). В общем, оба живы здоровы.

Слева Тиль, справа - Смолл, в порядке вклада в электроакустику. Между прочим, снимок редкий, мэтры не любили фотографироваться

Вешать или не вешать?

Образное определение условий измерения Fs как резонансной частоты динамика, висящего в воздухе, породило заблуждение, что так и надо эту частоту измерять, и энтузиасты норовили действительно подвешивать динамики на проволоках и верёвках. Измерениям параметров акустики будет посвящён отдельный выпуск «ВВ», а то и не один, здесь же отмечу: в грамотных лабораториях динамики при измерениях зажимают в тиски, а не подвешивают к люстре.

Итоги вычислительного эксперимента, которые помогут желающим понять, как величины электрической и механической добротности выражаются в импедансных кривых. Мы взяли полный набор электромеханических параметров реально существующего динамика, а потом стали изменять некоторые из них. Сперва - механическую добротность, как будто заменяли материал гофра и центрирующей шайбы. Потом - электрическую, для этого уже понадобилось изменять характеристики привода и подвижной системы. Вот что получилось:

Реальная импедансная кривая низкочастотного динамика. По ней вычисляются два из трёх главных параметров

Кривые импеданса для разных значений полной добротности, при этом электрическая Qes одна и та же, равная 0,5, а механическая изменяется от 1 до 8. Полная добротность Qts изменяется вроде бы не сильно, а высота горба на графике импеданса - сильно, и очень, при этом чем меньше Qms, тем он становится острее

Зависимость звукового давления от частоты при тех же значениях Qts. При измерении звукового давления важна только полная добротность Qts, поэтому совершенно непохожим кривым импеданса соответствуют не такие уж разные кривые звукового давления от частоты

Те же значения Qts, но теперь всюду Qms = 4, а Qes меняется так, чтобы выйти на те же значения Qts. Значения Qts те же, а кривые совсем другие и различаются между собой намного меньше. Нижние, красные кривые получены для тех значений, которые нельзя было получить в первом опыте при фиксированной Qes = 0,5

Кривые звукового давления для разных Qts, полученных изменением Qes. Четыре верхние кривые по форме - точно такие же, как когда мы меняли Qms, их форма определяется значениями Qts, а они остались прежними. Нижние, красные кривые, полученные для Qts больше 0,5, разумеется, другие, и на них начинает расти горб, обусловленный повышенной добротностью.

А вот теперь обратите внимание: дело не только в том, что при высоких Qts на характеристике появляется горб, при этом снижается чувствительность динамика на частотах выше резонансной. Объяснение простое: при прочих равных Qes может возрастать только с ростом массы подвижной системы или с уменьшением мощности магнита. И то и другое ведёт к падению чувствительности на средних частотах. Так что горб на резонансной частоте - это, скорее, следствие провала на частотах выше резонансной. В акустике ничего бесплатного не бывает...

Вклад младшего партнёра

Между прочим: основоположник метода А.Н. Тиль намеревался учитывать в расчётах только электрическую добротность, полагая (справедливо для своего времени), что доля механических потерь пренебрежимо мала по сравнению с потерями, вызванными работой «электрического тормоза» динамика. Вклад младшего партнёра, не единственный, впрочем, заключался в учёте Qms, теперь это стало важным: в современных головках используются материалы с повышенными потерями, которых не было в начале 60-х, и нам попадались динамики, где величина Qms составляла всего лишь 2 - 3, при электрической под единицу. При таких делах не учитывать механические потери было бы ошибкой. И особенно важным это стало с внедрением феррожидкостного охлаждения в ВЧ-головках, там из-за демпфирующего действия жидкости доля Qms в полной добротности становится решающей, а пик импеданса на частоте резонанса становится почти не виден, как на первом графике нашего вычислительного эксперимента.

Три карты, открытые Тилем и Смоллом

1. Fs - частота основного резонанса динамика без всякого корпуса. Характеризует только сам динамик, а не готовую акустическую систему на его базе. При установке в любой объём может только возрастать.

2. Qts - полная добротность динамика, безразмерная величина, характеризующая относительные потери в динамике. Чем она ниже, тем больше подавлен резонанс излучения и тем выше пик сопротивления на импедансной кривой. При установке в закрытый ящик возрастает.

3. Vas - эквивалентный объём динамика. Равен объёму воздуха с такой же жёсткостью, что и у подвеса. Чем жёстче подвес, тем меньше Vas. При одной и той же жёсткости Vas растёт с ростом площади диффузора.

Две половинки, составляющие карту №2

1. Qes - электрическая составляющая полной добротности, характеризует мощность электрического тормоза, препятствующего раскачке диффузора вблизи резонансной частоты. Обычно чем мощнее магнитная система, тем сильнее «тормоз» и тем меньше численно величина Qes.

2. Qms - механическая составляющая полной добротности, характеризует потери в упругих элементах подвеса. Потерь здесь намного меньше, чем в электрической составляющей, и численно Qms гораздо больше Qes.

Почём звенит колокол

Что общего у колокола и громкоговорителя? Ну, то, что оба звучат, - это очевидно. Важнее, что и то и другое - колебательные системы. А в чём различие? Колокол, как по нему ни долби, будет звучать на единственной частоте, предписанной каноном. А внешне не так уж непохожий на него динамик - в широком диапазоне частот, и может, при желании, одновременно изобразить и звон колокола, и пыхтение звонаря. Так вот: два из трёх параметров Тиля - Смолла как раз и описывают количественно это различие.

Только надо твёрдо запомнить, а лучше - перечитать цитату из основоположника в историко-биографической справке. Там сказано: «на низких частотах». К тому, как поведёт себя динамик на частотах более высоких, Тиль, Смолл и их параметры никакого отношения не имеют и никакой ответственности за это не несут. Какие частоты для динамика низкие, а какие - нет? А об этом и говорит первый из тройки параметров.

Карта первая, измеряемая в герцах

Итак: параметр Тиля - Смолла №1 - собственная резонансная частота динамика. Обозначается всегда Fs, независимо от языка публикации. Физический смысл предельно прост: раз динамик - колебательная система, значит, должна быть частота, на которой диффузор будет колебаться, будучи предоставлен сам себе. Как колокол после удара или струна после щипка. При этом имеется в виду, что динамик абсолютно «голый», не установлен ни в какой корпус, как бы висит в пространстве. Это важно, поскольку нас интересуют параметры собственно динамика, а не того, что его окружает.

Диапазон частот вокруг резонансной, две октавы вверх, две октавы вниз - это и есть область, где действуют параметры Тиля - Смолла. Для сабвуферных головок, ещё не установленных в корпус, Fs может составлять от 20 до 50 Гц, у мидбасовых динамиков от 50 (басовитые «шестёрки») до 100 - 120 («четвёрки»). У диффузорных среднечастотников - 100 - 200 Гц, у купольных - 400 - 800, у пищалок - 1000 - 2000 Гц (бывают исключения, очень редкие).

Как определяют собственную резонансную частоту динамика? Нет, как чаще всего определяют - ясно, читают в сопроводительной документации или в отчёте о тесте. Ну а как её изначально узнали? С колоколом было бы проще: дал по нему чем-нибудь и измерил частоту производимого гудения. Динамик же в явной форме ни на какой частоте гудеть не будет. То есть он хочет, но ему не даёт присущее его конструкции затухание колебаний диффузора. В этом смысле динамик очень сходен с автомобильной подвеской, и этой аналогией я пользовался не раз и ещё буду. Что произойдёт, если качнуть на подвеске автомобиль с пустыми амортизаторами? Он хоть несколько раз, но качнётся на собственной резонансной частоте (где есть пружина, там будет и частота). Амортизаторы, сдохшие только отчасти, остановят колебания после одного-двух периодов, а исправные - после первого же качка. В динамике амортизатор главнее пружины, причём здесь их даже два.

Первый, более слабый, работает благодаря тому, что происходит потеря энергии в подвесе. Не случайно гофр делается из специальных сортов каучука, мячик из такого материала от пола почти не будет отскакивать, специальная пропитка с большим внутренним трением выбирается и для центрирующей шайбы. Это как бы механический тормоз колебаний диффузора. Второй, гораздо более мощный - электрический.

Вот как он работает. Звуковая катушка динамика - его мотор. В ней течёт переменный ток от усилителя, и катушка, находящаяся в магнитном поле, начинает двигаться с частотой подведенного сигнала, двигая, понятно, и всю подвижную систему, затем она и здесь. Но ведь катушка, двигающаяся в магнитном поле - это генератор. Который будет вырабатывать тем больше электричества, чем сильнее движется катушка. И когда частота станет приближаться к резонансной, на которой диффузор «хочет» колебаться, амплитуда колебаний возрастёт, и напряжение, производимое звуковой катушкой, будет расти. Достигнув максимума точно на резонансной частоте. Какое это отношение имеет к торможению? Пока никакого. Но представьте себе, что выводы катушки замкнули между собой. Теперь уже по ней потечёт ток и возникнет сила, которая по школьному правилу Ленца будет препятствовать движению, его породившему. А ведь звуковая катушка в реальной жизни замкнута на выходное сопротивление усилителя, близкое к нулю. Получается как бы электрический тормоз, приспосабливающийся к обстановке: чем с большим размахом пытается ходить туда-сюда диффузор, тем больше этому препятствует встречный ток в звуковой катушке. У колокола тормозов нет, кроме затухания вибраций в его стенках, а в бронзе - какое затухание...

Карта вторая, не измеряемая ни в чём

Мощность тормозов динамика численно выражается во втором параметре Тиля - Смолла. Это - полная добротность динамика, обозначается Qts. Выражается численно, но не буквально. В смысле, чем мощнее тормоза, тем меньше величина Qts. Отсюда и название «добротность» в русском (или quality factor в английском, из которого возникло обозначение этой величины), что это как бы оценка качества колебательной системы. Физически добротность - отношение упругих сил в системе к вязким, иначе - к силам трения. Упругие силы сохраняют энергию в системе, попеременно перегоняя энергию из потенциальной (сжатая или растянутая пружина или же подвес динамика) в кинетическую (энергия движущегося диффузора). Вязкие норовят энергию любого движения превратить в тепло и безвозвратно рассеять. Высокая добротность (а у того же колокола она будет измеряться десятками тысяч) означает, что упругих сил намного больше, чем сил трения (вязких, это одно и то же). Это же означает, что на каждое колебание в тепло будет переходить только малая часть энергии, запасённой в системе. Поэтому, кстати, добротность - единственная величина в тройке параметров Тиля - Смолла, не имеющая размерности, это отношение одних сил к другим. Как рассеивает энергию колокол? Через внутреннее трение в бронзе, главным образом, потихоньку. Как это делает динамик, у которого добротность намного меньше, а значит, темпы потери энергии гораздо выше? Двумя способами, по числу «тормозов». Часть рассеивается через внутренние потери в упругих элементах подвеса, и эту долю потерь можно оценить отдельной величиной добротности, она носит название механической, обозначается Qms. Вторая, большая часть рассеивается в виде тепла от тока, проходящего по звуковой катушке. Тока, ей же выработанного. Это - электрическая добротность Qes. Суммарное действие тормозов определялось бы очень легко, если бы в ходу были не величины добротности, а наоборот, величины потерь. Мы бы их просто сложили. А раз мы имеем дело с величинами, обратными потерям, то и складывать придётся обратные величины, поэтому и выходит, что 1/Qts = 1/Qms + 1/Qes.

Типичные значения добротностей: механическая - от 5 до 10. Электрическая - от 0,2 до 1. Поскольку в дело идут обратные величины, то получается, что мы суммируем механический вклад в потери порядка 0,1 - 0,2 с электрическим, составляющим от 1 до 5. Ясно, что итог будет определяться в основном электрической добротностью, то есть главный тормоз динамика - электрический.

Так как же вырвать у динамика имена «трёх карт»? Ну хотя бы двух первых, до третьей ещё доберёмся. Пистолетом, как Германн, грозить бесполезно, динамик не старуха. На помощь приходит всё та же звуковая катушка, пламенный мотор динамика. Ведь мы уже осознали: пламенный мотор подрабатывает и пламенным генератором. И в этом качестве как бы ябедничает об амплитуде колебаний диффузора. Чем большее напряжение появится на звуковой катушке как результат её колебаний вместе с диффузором, тем больше, значит, размах колебаний, тем ближе, значит, мы к резонансной частоте.

Как это напряжение измерить, притом что к звуковой катушке подведен сигнал от усилителя? То есть как разделить подведенное к мотору от выработанного генератором, это же на одних и тех же выводах? А не надо разделять, надо измерить получающуюся сумму.

Для этого поступают так. Динамик присоединяют к усилителю с возможно большим выходным сопротивлением, в реальной жизни это означает: последовательно с динамиком включают резистор с номиналом намного, в сто, как минимум, раз больше номинального сопротивления динамика. Скажем, 1000 Ом. Теперь при работе динамика звуковая катушка будет вырабатывать противо-ЭДС, вроде как для работы электрического тормоза, но торможения не произойдёт: выводы катушки замкнуты между собой через очень большое сопротивление, ток мизерный, тормоз - никудышный. Зато напряжение, по правилу Ленца противоположное по полярности подведенному («порождающему движение»), сложится с ним в противофазе, и если в этот момент измерить кажущееся сопротивление звуковой катушки, то покажется, что оно очень большое. На самом деле при этом противо-ЭДС не даёт току от усилителя беспрепятственно протекать по катушке, прибор это истолковывает как возросшее сопротивление, а как ещё?

Через измерение импеданса, того самого «кажущегося» (а на деле - комплексного, со всякими активными и реактивными составляющими, сейчас об этом не время) сопротивления и открываются две карты из трёх. Кривая импеданса любого диффузорного динамика, от Келлога и Райса до наших дней, выглядит, в принципе, одинаково, она даже фигурирует в логотипе какого-то электроакустического научного сообщества, сейчас забыл, какого. Горб на низких (для этого динамика) частотах обозначает частоту его основного резонанса. Где максимум - там и вожделенная Fs. Элементарнее не бывает. Выше резонанса наступает минимум полного сопротивления, его-то обычно и принимают за номинальное сопротивление динамика, хотя, как видите, оно остаётся таким только в небольшой полосе частот. Выше полное сопротивление начинает вновь расти, теперь уже из-за того, что звуковая катушка - не только мотор, но и индуктивность, сопротивление которой растёт с частотой. Но туда мы сейчас ходить не будем, там интересующие нас параметры не живут.

Куда сложнее с величиной добротности, но, тем не менее, исчерпывающая информация о «второй карте» тоже содержится в импедансной кривой. Исчерпывающая, потому что по одной кривой можно вычислить и электрическую Qes, и механическую добротность Qms, по отдельности. Как потом сделать из них полную Qts, реально необходимую при расчёте оформления, мы уже знаем, дело нехитрое, не бином Ньютона.

Как именно определяются искомые величины по импедансной кривой, мы обсудим в другой раз, когда разговор пойдёт о методах измерения параметров. Сейчас будем исходить из того, что кто-то (производитель акустики или соратники вашего покорного слуги) это за вас сделали. Но отмечу вот что. Существует два заблуждения, связанных с попытками экспресс-анализа параметров Тиля - Смолла по виду кривой импеданса. Первое - совсем лоховское, его мы сейчас развеем без следа. Это когда глядят на кривую импеданса с огромным горбом на резонансе и восклицают: «Ничего себе добротность!» Типа - высокая. А глядя на маленький пупырышек на кривой, заключают: раз пик импеданса так приглажен, значит, у динамика высокое демпфирование, то есть - низкая добротность.

Так вот: в самом простом варианте это ровно наоборот. Что означает высокий пик импеданса на частоте резонанса? Что звуковая катушка вырабатывает много противо-ЭДС, предназначенной для электрического торможения колебаний диффузора. Только при таком включении, через большое сопротивление, ток, необходимый для работы тормоза, не протекает. А когда такой динамик окажется включён не для измерений, а нормально, напрямую от усилителя, тормозящий ток пойдёт будь здоров, катушка станет могучим препятствием на пути неумеренных колебаний диффузора на его любимой частоте.

При прочих равных можно грубо оценить добротность по кривой, причём именно помня: высота импедансного пика характеризует потенциал электрического тормоза динамика, следовательно, чем он выше, тем НИЖЕ добротность. Будет ли такая оценка исчерпывающей? Не совсем, как было сказано, она останется грубой. Ведь в импедансной кривой, как уже говорилось, закопана информация и о Qes, и о Qms, выкопать которую можно (вручную или с помощью компьютерной программы), проанализировав не только высоту, но и «ширину плеч» резонансного горба.

А как добротность сказывается на форме АЧХ динамика, нас ведь именно это интересует? Как сказывается - решающим образом сказывается. Чем ниже добротность, то есть чем мощнее внутренние тормоза динамика на резонансной частоте, тем ниже и более плавно спадая, пройдёт вблизи резонанса кривая, характеризующая создаваемое динамиком звуковое давление. Минимальная неравномерность в этой полосе частот будет при Qts, равной 0,707, что принято называть характеристикой Баттерворта. При высоких значениях добротности кривая звукового давления начнёт «горбиться» вблизи резонанса, понятно почему: тормоза слабые.

Бывает ли «хорошая» или «плохая» полная добротность? Сама по себе - нет, потому что, когда динамик окажется установлен в акустическое оформление, в качестве которого сейчас будем рассматривать только закрытый ящик, и частота его резонанса, и полная добротность станут другими. Почему? Потому что и то и то зависит от упругости подвеса динамика. Резонансная частота зависит только от массы подвижной системы и жёсткости подвеса. С ростом жёсткости Fs растёт, с ростом массы - падает. Когда динамик установлен в закрытый ящик, воздух в нём, обладающий упругостью, начинает работать дополнительной пружиной в подвесе, общая жёсткость повышается, Fs растёт. Растёт и полная добротность, поскольку она - отношение упругих сил к тормозящим. Возможности тормозов динамика от его установки в некий объём не изменятся (с чего бы?), а суммарная упругость - возрастёт, добротность - неизбежно возрастёт. И никогда не станет ниже, чем была у «голого» динамика. Никогда, это - нижний предел. Насколько всё это возрастёт? А это зависит от того, насколько жёсткий у динамика собственный подвес. Смотрите: одно и то же значение Fs можно получить при лёгком диффузоре на мягком подвесе или при тяжёлом - на жёстком, масса и жёсткость действуют в противоположных направлениях, а итог может оказаться численно равным. Теперь если мы поставим в какой-то объём (обладающий полагающимся этому объёму упругостью) динамик с жёстким подвесом, то он небольшого возрастания суммарной жёсткости и не заметит, величины Fs и Qts изменятся не сильно. Поставим туда же динамик с мягким подвесом, по сравнению с жёсткостью которого «воздушная пружина» будет уже существенной, и увидим, что суммарная жёсткость изменилась сильно, а значит, Fs и Qts, исходно такие же, как у первого динамика, изменятся существенно.

В тёмные «дотилевские» времена для расчёта новых значений частоты резонанса и добротности (они, чтобы не путать с параметрами «голого» динамика, обозначаются как Fc и Qtc) нужно было знать (или измерить) непосредственно упругость подвеса, в миллиметрах на ньютон приложенной силы, знать массу подвижной системы, а потом мудрить с программами расчёта. Тиль предложил концепцию «эквивалентного объёма», то есть такого объёма воздуха в закрытом ящике, упругость которого равна упругости подвеса динамика. Эта величина, обозначаемая Vas, и есть третья волшебная карта.

Карта третья, объёмная

Как измеряют Vas - история отдельная, там есть забавные повороты, и об этом, как говорю уже в третий раз, будет в специальном выпуске серии. Для практики важно понять две вещи. Первая: предельно лоховское заблуждение (увы, тем не менее встречающееся), что приведенное в сопроводительных документах к динамику значение Vas - это объём, в который динамик надо ставить. А это всего лишь - характеристика динамика, зависящая только от двух величин: жёсткости подвеса и диаметра диффузора. Если поставить динамик в ящик с объёмом, равным Vas, резонансная частота и полная добротность возрастут в 1,4 раза (это квадратный корень из двух). Если в объём, равный половине Vas - в 1,7 раза (корень из трёх). Если сделать ящик объёмом в одну треть от Vas, всё остальное возрастёт вдвое (корень из четырёх, логика должна быть уже понятна и без формул).

В результате, действительно, чем меньше при прочих равных величина Vas у динамика, тем на более компактное оформление можно рассчитывать, сохраняя плановые показатели по Fc и Qtc. Компактность, однако, не даётся бесплатно. В акустике бесплатного вообще не бывает. Малое значение Vas при той же резонансной частоте динамика - результат сочетания жёсткого подвеса с тяжёлой подвижной системой. А от массы «подвижки» самым решительным образом зависит чувствительность. Поэтому все сабвуферные головки, отличающиеся возможностью работы в компактных закрытых корпусах, характеризуются и низкой чувствительностью по сравнению с коллегами с лёгкими диффузорами, но большими значениями Vas. Так что хороших и плохих значений Vas тоже не бывает, всему своя цена.

Подготовлено по материалам журнала "Автозвук", март 2005 г. www.avtozvuk.com

Самыми основными параметрами, по которым можно рассчитать и изготовить сабвуфер являются:

  • Резонансная частота динамика Fs (Герц)
  • Эквивалентный объем Vas (литров или кубических футов)
  • Полная добротность Qts
  • Сопротивление постоянному току Re (Ом)

Для более серьезного подхода понадобится еще знать:

  • Механическую добротность Qms
  • Электрическую добротность Qes
  • Площадь диффузора Sd (м2) или его диаметр Dia (см)
  • Чувствительность SPL (dB)
  • Индуктивность Le (Генри)
  • Импеданс Z (Ом)
  • Пиковую мощность Pe (Ватт)
  • Массу подвижной системы Mms (г)
  • Относительную жесткость Cms (метров/ньютон)
  • Механическое сопротивление Rms (кг/сек)
  • Двигательную мощность BL

Большинство этих параметров может быть измерено или рассчитано в домашних условиях с помощью не особо сложных измерительных приборов и компьютера или калькулятора, умеющего извлекать корни и возводить в степень. Для еще более серьезного подхода к проектированию акустического оформления и учета характеристик динамиков рекомендую читать более серьезную литературу. Автор этого "труда" не претендует на особые знания в области теории, а все тут изложенное является компиляцией из различных источников - как иностранных, так и российских.

Измерение Re, Fs, Fc, Qes, Qms, Qts, Qtc, Vas, Cms, Sd.

Для проведения измерений этих параметров вам понадобится следующее оборудование:

  • Вольтметр
  • Генератор сигналов звуковой частоты
  • Частотомер
  • Мощный (не менее 5 ватт) резистор сопротивлением 1000 ом
  • Точный (+- 1%) резистор сопротивлением 10 ом
  • Провода, зажимы и прочая дребедень для соединения всего этого в единую схему.

Конечно, в этом списке возможны изменения. Например, большинство генераторов имеют собственную шкалу частоты и частотомер не является в таком случае необходимостью. Вместо генератора можно также использовать звуковую плату компьютера и соответствующее программное обеспечение, способное генерировать синусоидальные сигналы от 0 до 200Гц требуемой мощности.

Схема для измерений

Калибровка:

Для начала необходимо откалибровать вольтметр. Для этого вместо динамика подсоединяется сопротивление 10 Ом и подбором напряжения, выдаваемого генератором, надо добиться напряжения 0.01 вольта. Если резистор другого номинала, то напряжение должно соответствовать 1/1000 номинала сопротивления в омах. Например для калибровочного сопротивления 4 ома напряжение должно быть 0.004 вольта. Запомните! После калибровки регулировать выходное напряжение генератора НЕЛЬЗЯ до окончания всех измерений.

Нахождение Re

Теперь, подсоединив вместо калибровочного сопротивления динамик и выставив на генераторе частоту, близкую к 0 герц, мы можем определить его сопротивление постоянному току Re. Им будет являться показание вольтметра, умноженное на 1000. Впрочем, Re можно замерить и непосредственно омметром.

Нахождение Fs и Rmax

Динамик при этом и всех последующих измерениях должен находиться в свободном пространстве. Резонансная частота динамика находится по пику его импеданса (Z-характеристике). Для ее нахождения плавно изменяйте частоту генератора и смотрите на показания вольтметра. Та частота, на которой напряжение на вольтметре будет максимальным (дальнейшее изменение частоты будет приводить к падению напряжения) и будет являться частотой основного резонанса для этого динамика. Для динамиков диаметром больше 16см эта частота должна лежать ниже 100Гц. Не забудьте записать не только частоту, но и показания вольтметра. Умноженные на 1000, они дадут сопротивление динамика на резонансной частоте Rmax, необходимое для расчета других параметров.

Эти параметры находятся по следующим формулам:


Как видно, это последовательное нахождение дополнительных параметров Ro, Rx и измерение неизвестных нам ранее частот F1 и F2. Это частоты, при которых сопротивление динамика равно Rx. Поскольку Rx всегда меньше Rmax, то и частот будет две - одна несколько меньше Fs, а другая несколько больше. Вы можете проверить правильность своих измерений следующей формулой:

Если расчетный результат отличается от найденного ранее больше, чем на 1 герц, то нужно повторить все сначала и более аккуратно.

Итак, мы нашли и рассчитали несколько основных параметров и можем на их основании делать некоторые выводы:

  1. Если резонансная частота динамика выше 50Гц, то он имеет право претендовать на работу в лучшем случае как мидбас. О сабвуфере на таком динамике можно сразу забыть.
  2. Если резонансная частота динамика выше 100Гц, то это вообще не низкочастотник. Можете использовать его для воспроизведения средних частот в трехполосных системах.
  3. Если соотношение Fs/Qts у динамика составляет менее 50-ти, то этот динамик предназначен для работы исключительно в закрытых ящиках. Если больше 100 - исключительно для работы с фазоинвертором или в бандпассах. Если же значение находится в промежутке между 50 и 100, то тут нужно внимательно смотреть и на другие параметры - к какому типу акустического оформления динамик тяготеет. Лучше всего для этого использовать специальные компьютерные программы, способные смоделировать в графическом виде акустическую отдачу такого динамика в разном акустическом оформлении. Правда при этом не обойтись без других, не менее важных параметров - Vas, Sd, Cms и L.

Это так называемая эффективная излучающая поверхность диффузора. Для самых низких частот (в зоне поршневого действия) она совпадает с конструктивной и равна:

Радиусом R в данном случае будет являться половина расстояния от середины ширины резинового подвеса одной стороны до середины резинового подвеса противоположной. Это связано с тем, что половина ширины резинового подвеса также является излучающей поверхностью. Обратите внимание что единица измерения этой площади - квадратные метры. Соответственно и радиус нужно в нее подставлять в метрах.

Для этого нужны результаты одного из отсчетов из самого первого теста. Понадобится импеданс (полное сопротивление) звуковой катушки на частоте около 1000Гц. Поскольку реактивная составляющая (XL) отстоит от активной Re на угол 900, то можно воспользоваться теоремой Пифагора:

Поскольку Z (импеданс катушки на определенной частоте) и Re (сопротивление катушки по постоянному току) известны, то формула преобразуется к:

Найдя реактивное сопротивление XL на частоте F можно рассчитаь и саму индуктивность по формуле:

Измерения Vas

Есть несколько способов измерения эквивалентного объема, но в домашних условиях проще использовать два: метод "добавочной массы" и метод "добавочного объема". Первый из них требует из материалов несколько грузиков известного веса. Можно использовать набор грузиков от аптечных весов или воспользоваться старыми медными монетками 1,2,3 и 5 копеек, поскольку вес такой монетки в граммах соответствует номиналу. Второй метод требует наличия герметичного ящика заранее известного объема с соответствующим отверстием под динамик.

Нахождение Vas методом добавочной массы

Для начала нужно равномерно нагрузить диффузор грузиками и вновь измерить его резонансную частоту, записав ее как F"s. Она должна быть ниже, чем Fs. Лучше если новая резонансная частота будет меньше на 30%-50%. Масса грузиков берется приблизительно 10 граммов на каждый дюйм диаметра диффузора. Т.е. для 12" головки нужен груз массой около 120 граммов.